Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data

被引:2
|
作者
Oguamalam, Jeremy [1 ]
Radojicic, Una [1 ]
Filzmoser, Peter [1 ]
机构
[1] TU Wien, Inst Stat & Math Methods Econ, Vienna, Austria
基金
奥地利科学基金会;
关键词
Functional outlier detection; Mahalanobis distance; Robust covariance estimator; Regularization; ROBUST ESTIMATION; ALGORITHM; LOCATION;
D O I
10.1080/00401706.2024.2336542
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose the Minimum Regularized Covariance Trace (MRCT) estimator, a novel method for robust covariance estimation and functional outlier detection designed primarily for dense functional data. The MRCT estimator employs a subset-based approach that prioritizes subsets exhibiting greater centrality based on the generalization of the Mahalanobis distance, resulting in a fast-MCD type algorithm. Notably, the MRCT estimator handles high-dimensional datasets without the need for preprocessing or dimension reduction techniques, due to the internal smoothening whose amount is determined by the regularization parameter alpha > 0. The selection of alpha is automated. An extensive simulation study demonstrates the efficacy of the MRCT estimator in terms of robust covariance estimation and automated outlier detection, emphasizing the balance between noise exclusion and signal preservation achieved through appropriate selection of alpha. The method converges fast in practice and performs favorably when compared to other functional outlier detection methods.
引用
收藏
页码:588 / 599
页数:12
相关论文
共 50 条
  • [1] The minimum regularized covariance determinant estimator
    Boudt, Kris
    Rousseeuw, Peter J.
    Vanduffel, Steven
    Verdonck, Tim
    STATISTICS AND COMPUTING, 2020, 30 (01) : 113 - 128
  • [2] The minimum regularized covariance determinant estimator
    Kris Boudt
    Peter J. Rousseeuw
    Steven Vanduffel
    Tim Verdonck
    Statistics and Computing, 2020, 30 : 113 - 128
  • [3] Modified minimum covariance determinant estimator and its application to outlier detection of chemical process data
    Wu, Guoqing
    Chen, Chao
    Yan, Xuefeng
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (05) : 1007 - 1020
  • [4] Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
    Hardin, J
    Rocke, DM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 44 (04) : 625 - 638
  • [5] OUTLIER DETECTION VIA A MINIMUM RIDGECOVARIANCE DETERMINANT ESTIMATOR
    Li, Chikun
    Jin, Baisuo
    Wu, Yuehua
    STATISTICA SINICA, 2024, 34 (04) : 1923 - 1950
  • [6] A NONPARAMETRIC ESTIMATOR FOR THE COVARIANCE FUNCTION OF FUNCTIONAL DATA
    Sancetta, Alessio
    ECONOMETRIC THEORY, 2015, 31 (06) : 1359 - 1381
  • [7] Gaussian mixture classifier with regularized covariance estimator for hyperspectral data classification
    Kuo, BC
    Yang, JM
    Landgrebe, DA
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 276 - 278
  • [8] The minimum covariance determinant estimator for interval-valued data
    Tian, Wan
    Qin, Zhongfeng
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [9] The minimum covariance determinant estimator for interval-valued data
    Wan Tian
    Zhongfeng Qin
    Statistics and Computing, 2024, 34
  • [10] The Cellwise Minimum Covariance Determinant Estimator
    Raymaekers, Jakob
    Rousseeuw, Peter J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2610 - 2621