Convergence of blanket times for sequences of random walks on critical random graphs

被引:0
|
作者
Andriopoulos, George [1 ]
机构
[1] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
random walk in random environment; blanket time; Gromov-Hausdorff convergence; Galton-Watson tree; Erdos-Renyi random graph; BROWNIAN-MOTION; SCALING LIMITS; LOCAL-TIMES; TREES;
D O I
10.1017/S0963548322000359
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the e-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the epsilon-blanket times of the random walks if the e-blanket time of the limiting diffusion is continuous at e with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdos-Renyi random graph in the critical window. We highlight that proving continuity of the epsilon-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
引用
收藏
页码:478 / 515
页数:38
相关论文
共 50 条
  • [31] Collisions of random walks in reversible random graphs
    Hutchcroft, Tom
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 2 - 6
  • [32] Random Walks and Bisections in Random Circulant Graphs
    Mans, Bernard
    Shparlinski, Igor E.
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 542 - 555
  • [33] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [34] Large deviations of random walks on random graphs
    Coghi, Francesco
    Morand, Jules
    Touchette, Hugo
    PHYSICAL REVIEW E, 2019, 99 (02)
  • [35] On the cover time for random walks on random graphs
    Jonasson, J
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03): : 265 - 279
  • [36] Analytical results for the distribution of first-passage times of random walks on random regular graphs
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (11):
  • [37] Random walks on convergence groups
    Azemar, Aitor
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (02) : 581 - 612
  • [38] PAGERANK AND RANDOM WALKS ON GRAPHS
    Chung, Fan
    Zhao, Wenbo
    FETE OF COMBINATORICS AND COMPUTER SCIENCE, 2010, 20 : 43 - 62
  • [39] Coalescent random walks on graphs
    Tian, Jianjun Paul
    Liu, Zhenqiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (01) : 144 - 154
  • [40] Random walks on graphs: A survey
    Lovasz, L
    COMBINATORICS, PAUL ERDOS IS EIGHTY, VOL. 2, 1996, 2 : 353 - 397