Convergence of blanket times for sequences of random walks on critical random graphs

被引:0
|
作者
Andriopoulos, George [1 ]
机构
[1] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
random walk in random environment; blanket time; Gromov-Hausdorff convergence; Galton-Watson tree; Erdos-Renyi random graph; BROWNIAN-MOTION; SCALING LIMITS; LOCAL-TIMES; TREES;
D O I
10.1017/S0963548322000359
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the distribution of the e-blanket times of the random walks in the sequence. The precise nature of these bounds ensures convergence of the epsilon-blanket times of the random walks if the e-blanket time of the limiting diffusion is continuous at e with probability 1. This result enables us to prove annealed convergence in various examples of critical random graphs, including critical Galton-Watson trees and the Erdos-Renyi random graph in the critical window. We highlight that proving continuity of the epsilon-blanket time of the limiting diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting compact random metric space, and therefore we expect our results to hold for other examples of random graphs with a similar scale invariance property.
引用
收藏
页码:478 / 515
页数:38
相关论文
共 50 条
  • [21] Analytical results for the distribution of first hitting times of random walks on random regular graphs
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (14)
  • [22] Excursions and occupation times of critical excited random walks
    Dolgopyat, Dmitry
    Kosygina, Elena
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (01): : 427 - 450
  • [23] Hitting Times of Random Walks on Edge Corona Product Graphs
    Zhu, Mingzhe
    Xu, Wanyue
    Li, Wei
    Zhang, Zhongzhi
    Kan, Haibin
    COMPUTER JOURNAL, 2024, 67 (02): : 485 - 497
  • [24] Local Limit Theorems for Sequences of Simple Random Walks on Graphs
    D. A. Croydon
    B. M. Hambly
    Potential Analysis, 2008, 29 : 351 - 389
  • [25] Expected hitting times for random walks on weak products of graphs
    González-Arévalo, B
    Palacios, JL
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 33 - 39
  • [26] Spanning trees from the commute times of random walks on graphs
    Qiu, Huaijun
    Hancock, Edwin R.
    IMAGE ANALYSIS AND RECOGNITION, PT 2, 2006, 4142 : 375 - 385
  • [27] Expected hitting times for random walks on quadrilateral graphs and their applications
    Huang, Jing
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2389 - 2408
  • [28] Cutpoint decoupling and first passage times for random walks on graphs
    Kirkland, SJ
    Neumann, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (04) : 860 - 870
  • [29] Local Limit Theorems for Sequences of Simple Random Walks on Graphs
    Croydon, D. A.
    Hambly, B. M.
    POTENTIAL ANALYSIS, 2008, 29 (04) : 351 - 389