GAIN: Decentralized Privacy-Preserving Federated Learning

被引:5
|
作者
Jiang, Changsong [1 ,2 ]
Xu, Chunxiang [1 ,2 ]
Cao, Chenchen [1 ,2 ]
Chen, Kefei [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[3] Hangzhou Normal Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Privacy-preserving; Federated learning; Decentralization; Smart contract; Blockchain; SECURE;
D O I
10.1016/j.jisa.2023.103615
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning enables multiple participants to cooperatively train a model, where each participant computes gradients on its data and a coordinator aggregates gradients from participants to orchestrate training. To preserve data privacy, gradients need to be protected during training. Pairwise masking satisfies the requirement, which allows participants to blind gradients with masks and the coordinator to perform aggregation in the blinded field. However, the solution would leak aggregated results to external adversaries (e.g., an adversarial coordinator), which suffers from quantity inference attacks. Additionally, existing pairwise masking-based schemes rely on a central coordinator and are vulnerable to the single-point-of-failure problem. To address these issues, we propose a decentralized privacy-preserving federated learning scheme called GAIN. GAIN blinds gradients with masks and encrypts blinded gradients using additively homomorphic encryption, which ensures the confidentiality of gradients, and discloses nothing about aggregated results to external adversaries to resist quantity inference attacks. In GAIN, we design a derivation mechanism for generation of masks, where masks are derived from shared keys established by a single key agreement. The mechanism reduces the computation and communication costs of existing schemes. Furthermore, GAIN introduces smart contracts over blockchains to aggregate gradients in a decentralized manner, which addresses the single-point of-failure problem. Smart contracts also provide verifiability for model training. We present security analysis to demonstrate the security of GAIN, and conduct comprehensive experiments to evaluate its performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [22] Privacy-preserving federated learning for radiotherapy applications
    Hayati, H.
    Heijmans, S.
    Persoon, L.
    Murguia, C.
    van de Wouw, N.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S238 - S240
  • [23] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [24] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [25] Privacy-preserving and Efficient Decentralized Federated Learning-based Energy Theft Detector
    Ibrahem, Mohamed I.
    Mahmoud, Mohamed
    Fouda, Mostafa M.
    ElHalawany, Basem M.
    Alasmary, Waleed
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 287 - 292
  • [26] A Syntactic Approach for Privacy-Preserving Federated Learning
    Choudhury, Olivia
    Gkoulalas-Divanis, Aris
    Salonidis, Theodoros
    Sylla, Issa
    Park, Yoonyoung
    Hsu, Grace
    Das, Amar
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1762 - 1769
  • [27] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [28] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [29] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [30] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485