Contribution Measurement in Privacy-Preserving Federated Learning

被引:0
|
作者
Hsu, Ruei-hau [1 ]
Yu, Yi-an [1 ]
Su, Hsuan-cheng [1 ]
机构
[1] Natl Sun Yat Sen Univ, Informat Secur Res Ctr, Dept Comp Sci & Engn, Kaohsiung 804, Taiwan
关键词
privacy protection; federated learning; contribution measurement; Shapley va- lue; homomorphic encryption; fairness; verifiability;
D O I
10.6688/JISE.20241140(6).0002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a novel decentralized machine learning framework that differs from traditional centralized machine learning. It enables multiple participants to collaborate on training models without sharing raw data directly. Participants train the local model with their data and only upload the model parameters. To achieve a fair allocation of benefits by the common global model, a standard is needed to evaluate each model providers' contribution to FL. Shapley value is a classic concept from cooperative game theory and is often used in data evaluation for machine learning. This study introduces the Shapley value in privacy-preserving federated learning (PPFL) to construct a contribution measuring module for measuring the contribution of each model provider to the learning task and proposes a verification mechanism for the contribution results. Compared to the other related works for contribution measurement by Shapley value, this work achieves higher privacy protection, where local participants' data sets, local model parameters, and global model parameters are concealed. In addition, the verification of the fairness of contribution measurement is also supported. Moreover, this work achieves the access control of aggregated global models through the concept of threshold identity-based encryption, where model consumers can only gain access to the specific aggregated global model if they are authorized by sufficient model providers.
引用
收藏
页码:1173 / 1196
页数:24
相关论文
共 50 条
  • [1] Study of Contribution Verifiability for Privacy-preserving Federated Learning
    Hsu, Ruei-Hau
    Kao, Shang-Wei
    Huang, Ting-Yun
    2021 INTERNATIONAL CONFERENCE ON SECURITY AND INFORMATION TECHNOLOGIES WITH AI, INTERNET COMPUTING AND BIG-DATA APPLICATIONS, 2023, 314 : 257 - 266
  • [2] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [3] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [4] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [5] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [6] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [7] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [8] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [9] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [10] Privacy-preserving federated learning on lattice quantization
    Zhang, Lingjie
    Zhang, Hai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (06)