Region Selective Fusion Network for Robust RGB-T Tracking

被引:7
|
作者
Yu, Zhencheng [1 ,2 ,3 ]
Fan, Huijie [1 ,2 ]
Wang, Qiang [4 ]
Li, Ziwan [1 ,5 ]
Tang, Yandong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shenyang Univ, Key Lab Mfg Ind Integrated, Shenyang 110096, Peoples R China
[5] Shenyang Univ Chem Technol, Sch Informat Engn, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
Target tracking; Feature extraction; Reliability; Mobile computing; Ad hoc networks; Head; Visualization; Deep visual tracking; neural networks; visible-infrared fusion; vision transformer;
D O I
10.1109/LSP.2023.3316021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RGB-T tracking utilizes thermal infrared images as a complement to visible light images in order to perform more robust visual tracking in various scenarios. However, the highly aligned RGB-T image pairs introduces redundant information, the modal quality fluctuation during tracking also brings unreliable information. Existing RGB-T trackers usually use channel-wise multi-modal feature fusion in which the low-quality features degrades the fused features and causes trackers to drift. In this work, we propose a region selective fusion network that first evaluates each image region by cross-modal and cross-region modeling, then removes low-quality redundant region features to alleviate the negative effects caused by unreliable information in multi-modal fusion. Besides, the region removal scheme brings a efficiency boost as redundant features are removed progressively, this enables the tracker to run at a high tracking speed. Extensive experiments show that the proposed tracker achieves competitive performance with a real-time tracking speed on multiple RGB-T tracking benchmarks including LasHeR, RGBT234 and GTOT.
引用
收藏
页码:1357 / 1361
页数:5
相关论文
共 50 条
  • [1] Siamese infrared and visible light fusion network for RGB-T tracking
    Jingchao Peng
    Haitao Zhao
    Zhengwei Hu
    Yi Zhuang
    Bofan Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3281 - 3293
  • [2] Siamese infrared and visible light fusion network for RGB-T tracking
    Peng, Jingchao
    Zhao, Haitao
    Hu, Zhengwei
    Zhuang, Yi
    Wang, Bofan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3281 - 3293
  • [3] TEFNet: Target-Aware Enhanced Fusion Network for RGB-T Tracking
    Chen, Panfeng
    Gong, Shengrong
    Ying, Wenhao
    Du, Xin
    Zhong, Shan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 432 - 443
  • [4] Bridging Search Region Interaction with Template for RGB-T Tracking
    Hui, Tianrui
    Xun, Zizheng
    Peng, Fengguang
    Huang, Junshi
    Wei, Xiaoming
    Wei, Xiaolin
    Dai, Jiao
    Han, Jizhong
    Liu, Si
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 13630 - 13639
  • [5] Semantic-guided fusion for multiple object tracking and RGB-T tracking
    Liu, Xiaohu
    Luo, Yichuang
    Zhang, Yan
    Lei, Zhiyong
    IET IMAGE PROCESSING, 2023, 17 (11) : 3281 - 3291
  • [6] Learning a Twofold Siamese Network for RGB-T Object Tracking
    Kuai, Yangliu
    Li, Dongdong
    Qian, Que
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (05)
  • [7] ROBUST RGB-T TRACKING VIA CONSISTENCY REGULATED SCENE PERCEPTION
    Kang, Bin
    Liu, Liwei
    Zhao, Shihao
    Du, Songlin
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 510 - 514
  • [8] Online Learning Samples and Adaptive Recovery for Robust RGB-T Tracking
    Liu, Jun
    Luo, Zhongqiang
    Xiong, Xingzhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 724 - 737
  • [9] Middle fusion and multi-stage, multi-form prompts for robust RGB-T tracking
    Wang, Qiming
    Bai, Yongqiang
    Song, Hongxing
    NEUROCOMPUTING, 2024, 596
  • [10] Jointly Modeling Motion and Appearance Cues for Robust RGB-T Tracking
    Zhang, Pengyu
    Zhao, Jie
    Bo, Chunjuan
    Wang, Dong
    Lu, Huchuan
    Yang, Xiaoyun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3335 - 3347