Cross-View Attention Interaction Fusion Algorithm for Stereo Super-Resolution

被引:0
|
作者
Zhang, Yaru [1 ]
Liu, Jiantao [1 ]
Zhang, Tong [2 ]
Zhao, Zhibiao [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei 230031, Peoples R China
[3] Tianjin Univ Technol & Educ, Sch Automat & Elect Engn, Tianjin 300222, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 12期
关键词
stereo super-resolution; convolutional neural network; interaction fusion; attention mechanism; IMAGE; NETWORK; MODULE;
D O I
10.3390/app13127265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the process of stereo super-resolution reconstruction, in addition to the richness of the extracted feature information directly affecting the texture details of the reconstructed image, the texture details of the corresponding pixels between stereo image pairs also have an important impact on the reconstruction accuracy in the process of network learning. Therefore, aiming at the information interaction and stereo consistency of stereo image pairs, a cross-view attention interaction fusion stereo super-resolution algorithm is proposed. Firstly, based on parallax attention mechanism and triple attention mechanism, an attention stereo fusion module is constructed. The attention stereo fusion module is inserted between different levels of two single image super-resolution network branches, and the attention weight is calculated through the cross dimensional interaction of the three branches. It makes full use of the ability of single image super-resolution network to extract single view information and further maintaining the stereo consistency between stereo image pairs. Then, an enhanced cross-view interaction strategy including three fusion methods is proposed. Specifically, the vertical sparse fusion method is used to integrate the interior view information of different levels in the two single image super-resolution sub branches, the horizontal dense fusion method is used to connect the adjacent attention stereo fusion modules and the constraint between stereo image consistency is further strengthened in combination with the feature fusion method. Finally, the experimental results on Flickr 1024, Middlebury and KITTI benchmark datasets show that the proposed algorithm is superior to the existing stereo image super-resolution methods in quantitative measurement and qualitative visual quality while maintaining the stereo consistency of image pairs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Lightweight Stereo Image Super-Resolution Using modified Parallax Attention
    Govind, Smriti
    Pradeep, R.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2025,
  • [22] TBNet: Stereo Image Super-Resolution with Multi-Scale Attention
    Zhu, Jiyang
    Han, Xue
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (18)
  • [23] Decoupled Cross-Scale Cross-View Interaction for Stereo Image Enhancement in The Dark
    Zheng, Huan
    Zhang, Zhao
    Fan, Jicong
    Hong, Richang
    Yang, Yi
    Yan, Shuicheng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1475 - 1484
  • [24] A super-resolution reconstruction algorithm based on feature fusion
    Wang, Lin
    Yang, Siqi
    Jia, Jingqian
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3060 - 3065
  • [25] Adaptive super-resolution fusion algorithm with detail preserving
    Yang, Ai-Ping
    Hou, Zheng-Xin
    Wang, Cheng-You
    He, Kai
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2009, 42 (08): : 727 - 732
  • [26] IGAF: Incremental Guided Attention Fusion for Depth Super-Resolution
    Tragakis, Athanasios
    Kaul, Chaitanya
    Mitchell, Kevin J.
    Dai, Hang
    Murray-Smith, Roderick
    Faccio, Daniele
    SENSORS, 2025, 25 (01)
  • [27] VIDEO SUPER-RESOLUTION FOR MIXED RESOLUTION STEREO
    Jain, Ankit K.
    Nguyen, Truong Q.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 962 - 966
  • [28] PYRAMID FUSION ATTENTION NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    He, Hao
    Du, Zongcai
    Li, Wenfeng
    Tang, Jie
    Wu, Gangshan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2165 - 2169
  • [29] Structured Fusion Attention Network for Image Super-Resolution Reconstruction
    Dai, Yaonan
    Yu, Jiuyang
    Hu, Tianhao
    Lu, Yang
    Zheng, Xiaotao
    IEEE ACCESS, 2022, 10 : 31896 - 31906
  • [30] Image Super-Resolution Network Based on Feature Fusion Attention
    Zou, Changjun
    Ye, Lintao
    JOURNAL OF SENSORS, 2022, 2022