Lightweight Stereo Image Super-Resolution Using modified Parallax Attention

被引:0
|
作者
Govind, Smriti [1 ]
Pradeep, R. [1 ]
机构
[1] APJ Abdul Kalam Technol Univ, Coll Engn Trivandrum, Dept Elect & Commun Engn, Thiruvananthapuram 695016, Kerala, India
关键词
Stereo image; Super-resolution; Parallax attention module; Depth wise convolutions; Occlusion; Multi-camera;
D O I
10.1007/s11265-025-01953-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent smartphones employ multi-camera setups for capturing images, prompting the exploration of stereo image super-resolution (SSR) algorithms. SSR uses the complementary information provided by a binocular system to upscale input stereo image pairs. The effectiveness of SSR algorithms depends on successfully utilizing the stereo information from the training images. This paper, proposes a lightweight stereo image super-resolution method using modified parallax attention (LmPASSR), which enhances the utilization of stereo information. This is achieved through a modified occlusion mask that filters out irrelevant attention values. Additionally, the model incorporates depth-wise convolutions, implemented as D-blocks, to minimize parameter usage. Experimental results demonstrate that despite having fewer parameters, the proposed model produces results comparable to state-of-the-art (SOTA) methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Symmetric Parallax Attention for Stereo Image Super-Resolution
    Wang, Yingqian
    Ying, Xinyi
    Wang, Longguang
    Yang, Jungang
    An, Wei
    Guo, Yulan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 766 - 775
  • [2] Learning Parallax Attention for Stereo Image Super-Resolution
    Wang, Longguang
    Wang, Yingqian
    Liang, Zhengfa
    Lin, Zaiping
    Yang, Jungang
    An, Wei
    Guo, Yulan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12242 - 12251
  • [3] Cross Parallax Attention Network for Stereo Image Super-Resolution
    Chen, Canqiang
    Qing, Chunmei
    Xu, Xiangmin
    Dickinson, Patrick
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 202 - 216
  • [4] Parallax-Based Spatial and Channel Attention for Stereo Image Super-Resolution
    Duan, Chenyang
    Xiao, Nanfeng
    IEEE ACCESS, 2019, 7 : 183672 - 183679
  • [5] SwiniPASSR: Swin Transformer based Parallax Attention Network for Stereo Image Super-Resolution
    Jin, Kai
    Wei, Zeqiang
    Yang, Angulia
    Guo, Sha
    Gao, Mingzhi
    Zhou, Xiuzhuang
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 919 - 928
  • [6] A Stereo Attention Module for Stereo Image Super-Resolution
    Ying, Xinyi
    Wang, Yingqian
    Wang, Longguang
    Sheng, Weidong
    An, Wei
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 496 - 500
  • [7] ENHANCED BACK PROJECTION NETWORK BASED STEREO IMAGE SUPER-RESOLUTION CONSIDERING PARALLAX ATTENTION
    Ma, Li
    Li, Sumei
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1834 - 1838
  • [8] Parallax-based second-order mixed attention for stereo image super-resolution
    Duan, Chenyang
    Xiao, Nanfeng
    IET COMPUTER VISION, 2022, 16 (01) : 26 - 37
  • [9] Hybrid Cross-View Attention Network for Lightweight Stereo Image Super-Resolution
    Yang, Yuqiang
    Zhang, Zhiming
    Du, Yao
    Yang, Jingjing
    Bao, Long
    Sun, Heng
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, : 6055 - 6064
  • [10] A scalable attention network for lightweight image super-resolution
    Fang, Jinsheng
    Chen, Xinyu
    Zhao, Jianglong
    Zeng, Kun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)