Differential Games and Hamilton-Jacobi-Isaacs Equations in Metric Spaces

被引:0
|
作者
Liu, Qing [1 ]
Zhou, Xiaodan [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Onna, Okinawa, Japan
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2023年 / 8卷 / 01期
关键词
Hamilton-Jacobi equations; metric space; differential games; viscosity solutions; VISCOSITY SOLUTIONS; EIKONAL EQUATIONS; REPRESENTATION; FORMULAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a game-based interpretation of Hamilton-Jacobi-Isaacs equations in metric spaces. We construct a two-person continuous-time game in a geodesic space and show that the value function, defined by an explicit representation formula, is the unique solution of the Hamilton-Jacobi equation. Our result develops, in a general geometric setting, the classical connection between differential games and the viscosity solutions to possibly nonconvex Hamilton -Jacobi equations.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 50 条
  • [42] Optimal Control of Affine Nonlinear Continuous-time Systems Using an Online Hamilton-Jacobi-Isaacs Formulation
    Dierks, T.
    Jagannathan, S.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 3048 - 3053
  • [43] Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide
    N. N. Krasovskii
    A. N. Kotel’nikova
    Differential Equations, 2009, 45 : 1653 - 1668
  • [44] On the Hamiltonian and Hamilton-Jacobi equations for metric gravity
    Frolov, Alexei M.
    CANADIAN JOURNAL OF PHYSICS, 2020, 98 (04) : 405 - 412
  • [45] Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide
    Krasovskii, N. N.
    Kotel'nikova, A. N.
    DIFFERENTIAL EQUATIONS, 2009, 45 (11) : 1653 - 1668
  • [46] Hamilton-Jacobi Functional Equations and Differential Games for Neutral-Type Systems
    Lukoyanov, N. Yu.
    Gomoyunov, M. I.
    Plaksin, A. R.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 654 - 657
  • [47] Generalized Hamilton-Jacobi-Isaacs Formulation-Based Neural Network H∞ Control for Constrained Input Nonlinear Systems
    Huang, Yuzhu
    Liu, Derong
    Wei, Qinglai
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 218 - 225
  • [48] Differential Games for Fractional-Order Systems: Hamilton-Jacobi-Bellman-Isaacs Equation and Optimal Feedback Strategies
    Gomoyunov, Mikhail, I
    MATHEMATICS, 2021, 9 (14)
  • [49] STABLE NUMERICAL SCHEMES FOR SOLVING HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    Turova, Varvara L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 992 - 1007
  • [50] Probabilistic interpretation of a system of coupled Hamilton-Jacobi-Bellman-Isaacs equations
    Li, Juan
    Li, Wenqiang
    Wei, Qingmeng
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27