Differential Games and Hamilton-Jacobi-Isaacs Equations in Metric Spaces

被引:0
|
作者
Liu, Qing [1 ]
Zhou, Xiaodan [1 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Onna, Okinawa, Japan
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2023年 / 8卷 / 01期
关键词
Hamilton-Jacobi equations; metric space; differential games; viscosity solutions; VISCOSITY SOLUTIONS; EIKONAL EQUATIONS; REPRESENTATION; FORMULAS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a game-based interpretation of Hamilton-Jacobi-Isaacs equations in metric spaces. We construct a two-person continuous-time game in a geodesic space and show that the value function, defined by an explicit representation formula, is the unique solution of the Hamilton-Jacobi equation. Our result develops, in a general geometric setting, the classical connection between differential games and the viscosity solutions to possibly nonconvex Hamilton -Jacobi equations.
引用
收藏
页码:121 / 138
页数:18
相关论文
共 50 条
  • [31] A numerical computational approach of Hamilton-Jacobi-Isaacs equation in nonlinear H-infinity control problems
    Patpong, L
    Sampei, M
    Koga, M
    Shimizu, E
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3774 - 3779
  • [32] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [33] Metric character of Hamilton-Jacobi equations
    Siconolfi, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 1987 - 2009
  • [34] Hamilton-Jacobi equations in evolutionary games
    Krasovskiy, N. A.
    Kryazhimskiy, A. V.
    Tarasyev, A. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 114 - 131
  • [35] MULTIGRID METHODS FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN AND HAMILTON-JACOBI-BELLMAN-ISAACS EQUATIONS
    Han, Dong
    Wan, Justin W. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : S323 - S344
  • [36] Functional Hamilton-Jacobi type equations and differential games with hereditary information
    Lukoyanov, NY
    DOKLADY AKADEMII NAUK, 2000, 371 (04) : 457 - 461
  • [37] Hamilton–Jacobi functional equations and differential games for neutral-type systems
    N. Yu. Lukoyanov
    M. I. Gomoyunov
    A. R. Plaksin
    Doklady Mathematics, 2017, 96 : 654 - 657
  • [38] TWO-PLAYER ZERO-SUM STOCHASTIC DIFFERENTIAL GAMES WITH REGIME SWITCHING AND CORRESPONDING HAMILTON-JACOBI-BELLMAN-ISAACS' EQUATIONS
    Guo, Li
    Wu, Zhen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (08) : 1140 - 1166
  • [39] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [40] ON THE HOMOGENIZATION OF SOME NON-COERCIVE HAMILTON JACOBI ISAACS EQUATIONS
    Bardi, Martino
    Terrone, Gabriele
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 207 - 236