This paper is concerned with a game-based interpretation of Hamilton-Jacobi-Isaacs equations in metric spaces. We construct a two-person continuous-time game in a geodesic space and show that the value function, defined by an explicit representation formula, is the unique solution of the Hamilton-Jacobi equation. Our result develops, in a general geometric setting, the classical connection between differential games and the viscosity solutions to possibly nonconvex Hamilton -Jacobi equations.
机构:
Univ S Australia, Sch Math, Ctr Ind & Applicable Math, Adelaide, SA 5001, AustraliaUniv S Australia, Sch Math, Ctr Ind & Applicable Math, Adelaide, SA 5001, Australia
机构:
Land Operations Division, Defence Science and Technology Org., Department of Defence, P.O. Box 1500, Edinburgh, SA 5111, AustraliaLand Operations Division, Defence Science and Technology Org., Department of Defence, P.O. Box 1500, Edinburgh, SA 5111, Australia
机构:
Univ Brest, Lab Math Bretagne Atlantique, CNRS, UMR 6205, 6 Ave Victor Le Gorgeu,CS 93837, F-29238 Brest 3, FranceUniv Brest, Lab Math Bretagne Atlantique, CNRS, UMR 6205, 6 Ave Victor Le Gorgeu,CS 93837, F-29238 Brest 3, France
Jimenez, C.
Quincampoix, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brest, Lab Math Bretagne Atlantique, CNRS, UMR 6205, 6 Ave Victor Le Gorgeu,CS 93837, F-29238 Brest 3, FranceUniv Brest, Lab Math Bretagne Atlantique, CNRS, UMR 6205, 6 Ave Victor Le Gorgeu,CS 93837, F-29238 Brest 3, France