Automatic Tuning of Denoising Algorithms Parameters Without Ground Truth

被引:2
|
作者
Floquet, Arthur [1 ,2 ]
Dutta, Sayantan [3 ]
Soubies, Emmanuel [1 ,2 ]
Pham, Duong-Hung [1 ,2 ]
Kouame, Denis [1 ,2 ]
机构
[1] Univ Toulouse, IRIT Lab, F-31400 Toulouse, France
[2] CNRS, F-31400 Toulouse, France
[3] Weill Cornell Med, Dept Radiol, New York, NY 10022 USA
关键词
Noise measurement; Noise reduction; Tuning; Training; Signal processing algorithms; Costs; Noise level; Bilevel optimization; denoising; hyper-parameter tuning;
D O I
10.1109/LSP.2024.3354554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Denoising is omnipresent in image processing. It is usually addressed with algorithms relying on a set of hyperparameters that control the quality of the recovered image. Manual tuning of those parameters can be a daunting task, which calls for the development of automatic tuning methods. Given a denoising algorithm, the best set of parameters is the one that minimizes the error between denoised and ground-truth images. Clearly, this ideal approach is unrealistic, as the ground-truth images are unknown in practice. In this work, we propose unsupervised cost functions-i.e., that only require the noisy image-that allow us to reach this ideal gold standard performance. Specifically, the proposed approach makes it possible to obtain an average PSNR output within less than 1% of the best achievable PSNR.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 50 条
  • [41] Evaluation of HTR models without Ground Truth Material
    Strobel, Phillip Benjamin
    Clematide, Simon
    Volk, Martin
    Schwitter, Raphael
    Hodel, Tobias
    Schoch, David
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 4395 - 4404
  • [42] Costs and Benefits of Tuning Parameters of Evolutionary Algorithms
    Naumen, Volker
    Smit, S. K.
    Eiben, A. E.
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS, 2008, 5199 : 528 - 538
  • [43] Evaluation Without Ground Truth in Social Media Research
    Zafarani, Reza
    Liu, Huan
    COMMUNICATIONS OF THE ACM, 2015, 58 (06) : 54 - 60
  • [44] Automatic system for TV raster parameters tuning
    Sadykhov, R
    Klimovich, A
    Podenok, L
    DESDES '1: PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON DISCRETE-EVENT SYSTEM DESIGN, 2001, : 237 - 242
  • [45] On evaluating brain tissue classifiers without a ground truth
    Bouix, Sylvain
    Martin-Fernandez, Marcos
    Ungar, Lida
    Nakamura, Motoaki
    Koo, Min-Seong
    McCarley, Robert W.
    Shenton, Martha E.
    NEUROIMAGE, 2007, 36 (04) : 1207 - 1224
  • [46] SHAPE INITIALIZATION WITHOUT GROUND TRUTH FOR FACE ALIGNMENT
    Qin, Rizhen
    Zhang, Ting
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1278 - 1282
  • [47] Evaluating and Improving Disparity Maps Without Ground Truth
    Pocol, Andreea
    Istead, Lesley
    Kaplan, Craig S.
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2024, 2024, 1065 : 153 - 177
  • [48] A Novel Approach to Evaluate Community Detection Algorithms on Ground Truth
    Rossetti, Giulio
    Pappalardo, Luca
    Rinzivillo, Salvatore
    COMPLEX NETWORKS VII, 2016, 644 : 133 - 144
  • [49] Ground Truth Spanish Automatic Extractive Text Summarization Bounds
    Matias Mendoza, Griselda Areli
    Ledeneva, Yulia
    Garcia Hernandez, Rene Arnulfo
    Alexandrov, Mikhail
    Hernandez Castaneda, Angel
    COMPUTACION Y SISTEMAS, 2020, 24 (03): : 1241 - 1256
  • [50] Ground truth for training and evaluation of automatic main subject detection
    Etz, SP
    Luo, JB
    HUMAN VISION AND ELECTRONIC IMAGING V, 2000, 3959 : 434 - 442