Automatic Tuning of Denoising Algorithms Parameters Without Ground Truth

被引:2
|
作者
Floquet, Arthur [1 ,2 ]
Dutta, Sayantan [3 ]
Soubies, Emmanuel [1 ,2 ]
Pham, Duong-Hung [1 ,2 ]
Kouame, Denis [1 ,2 ]
机构
[1] Univ Toulouse, IRIT Lab, F-31400 Toulouse, France
[2] CNRS, F-31400 Toulouse, France
[3] Weill Cornell Med, Dept Radiol, New York, NY 10022 USA
关键词
Noise measurement; Noise reduction; Tuning; Training; Signal processing algorithms; Costs; Noise level; Bilevel optimization; denoising; hyper-parameter tuning;
D O I
10.1109/LSP.2024.3354554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Denoising is omnipresent in image processing. It is usually addressed with algorithms relying on a set of hyperparameters that control the quality of the recovered image. Manual tuning of those parameters can be a daunting task, which calls for the development of automatic tuning methods. Given a denoising algorithm, the best set of parameters is the one that minimizes the error between denoised and ground-truth images. Clearly, this ideal approach is unrealistic, as the ground-truth images are unknown in practice. In this work, we propose unsupervised cost functions-i.e., that only require the noisy image-that allow us to reach this ideal gold standard performance. Specifically, the proposed approach makes it possible to obtain an average PSNR output within less than 1% of the best achievable PSNR.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 50 条
  • [21] Automatic track filter tuning by randomized algorithms
    Boers, Y
    Driessen, H
    Laclé, N
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2002, 38 (04) : 1444 - 1449
  • [22] Establishing Ground Truth on Pyschophysiological Models for Training Machine Learning Algorithms: Options for Ground Truth Proxies
    Brawner, Keith
    Boyce, Michael W.
    AUGMENTED COGNITION: NEUROCOGNITION AND MACHINE LEARNING, AC 2017, PT I, 2017, 10284 : 468 - 477
  • [23] Biologically Inspired Algorithms Applied in Automatic Tuning of Parallel Solver Parameters for Fast Execution Times
    Panoc, Tomas
    Meca, Ondrej
    Riha, Lubomir
    Brzobohaty, Tomas
    Kozubek, Tomas
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [24] AUTOMATIC TUNING ALGORITHMS FOR ACTIVE-FILTERS
    HOCEVAR, DE
    TRICK, TN
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (07): : 448 - 458
  • [25] Learning the probability of correspondences without ground truth
    Yang, QX
    Steele, RM
    Nistér, D
    Jaynes, C
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1140 - 1147
  • [26] Assessing Usefulness of Blacklists Without the Ground Truth
    Kidmose, Egon
    Gausel, Kristian
    Brandbyge, Soren
    Pedersen, Jens Myrup
    IMAGE PROCESSING AND COMMUNICATIONS CHALLENGES 10, 2019, 892 : 216 - 223
  • [27] Binary Classifier Evaluation Without Ground Truth
    Fedorchuk, Maksym
    Lamiroy, Bart
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 145 - 150
  • [28] Automatic Parameter Tuning of Motion Planning Algorithms
    Cano, Jose
    Yang, Yiming
    Bodin, Bruno
    Nagarajan, Vijay
    O'Boyle, Michael
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 8103 - 8109
  • [29] ALGORITHMS FOR TUNING OF THE COORDINATING AUTOMATIC CONTROL SYSTEMS
    Gurskiy, A. A.
    Goncharenko, A. E.
    Dubna, S. M.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2020, (01) : 190 - 199
  • [30] Evolutionary algorithms for automatic tuning of QFT controllers
    García-Sanz, M
    Osés, JA
    Proceedings of the 23rd IASTED International Conference on Modelling, Identification, and Control, 2004, : 1 - 6