Automatic Tuning of Denoising Algorithms Parameters Without Ground Truth

被引:2
|
作者
Floquet, Arthur [1 ,2 ]
Dutta, Sayantan [3 ]
Soubies, Emmanuel [1 ,2 ]
Pham, Duong-Hung [1 ,2 ]
Kouame, Denis [1 ,2 ]
机构
[1] Univ Toulouse, IRIT Lab, F-31400 Toulouse, France
[2] CNRS, F-31400 Toulouse, France
[3] Weill Cornell Med, Dept Radiol, New York, NY 10022 USA
关键词
Noise measurement; Noise reduction; Tuning; Training; Signal processing algorithms; Costs; Noise level; Bilevel optimization; denoising; hyper-parameter tuning;
D O I
10.1109/LSP.2024.3354554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Denoising is omnipresent in image processing. It is usually addressed with algorithms relying on a set of hyperparameters that control the quality of the recovered image. Manual tuning of those parameters can be a daunting task, which calls for the development of automatic tuning methods. Given a denoising algorithm, the best set of parameters is the one that minimizes the error between denoised and ground-truth images. Clearly, this ideal approach is unrealistic, as the ground-truth images are unknown in practice. In this work, we propose unsupervised cost functions-i.e., that only require the noisy image-that allow us to reach this ideal gold standard performance. Specifically, the proposed approach makes it possible to obtain an average PSNR output within less than 1% of the best achievable PSNR.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 50 条
  • [1] Unsupervised Tuning of Filter Parameters Without Ground-Truth Applied to Aerial Robots
    Li, Shushuai
    De Wagter, Christophe
    de Croon, Guido C. H. E.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4102 - 4107
  • [2] Automatic and interactive rule inference without ground truth
    Carton, Ceres
    Lemaitre, Aurelie
    Couasnon, Bertrand
    2015 13TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2015, : 696 - 700
  • [3] Automatic tuning for the segmentation of infrared images considering uncertain ground truth
    Usamentiaga, Ruben
    Garcia, Daniel F.
    Molleda, Julio
    JOURNAL OF ELECTRONIC IMAGING, 2009, 18 (01)
  • [4] Comparison of algorithms for ultrasound image segmentation without ground truth
    Sikka, Karan
    Deserno, Thomas M.
    MEDICAL IMAGING 2010: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2010, 7627
  • [5] Introspective Evaluation of Perception Performance for Parameter Tuning without Ground Truth
    Hu, Humphrey
    Kantor, George
    ROBOTICS: SCIENCE AND SYSTEMS XIII, 2017,
  • [6] Introspective evaluation of perception performance for parameter tuning without ground truth
    Hu, Humphrey
    Kantor, George
    Robotics: Science and Systems, 2017, 13
  • [7] Validation of Automatic Cb Observations for METAR Messages without Ground Truth
    Hyvarinen, Otto
    Saltikoff, Elena
    Hohti, Harri
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2015, 54 (10) : 2063 - 2075
  • [8] Automatic Ground-Truth Validation With Genetic Algorithms for Multispectral Image Classification
    Ghoggali, Noureddine
    Melgani, Farid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07): : 2172 - 2181
  • [9] GROUND TRUTH FREE DENOISING BY OPTIMAL TRANSPORT
    Dittmer, Soren
    Schoenlieb, Carola-bibiane
    Maass, Peter
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (01): : 34 - 58
  • [10] Automatic Parameters Tuning of Late Reverberation Algorithms for Audio Augmented Reality
    Bona, Riccardo
    Fantini, Davide
    Presti, Giorgio
    Tiraboschi, Marco
    Engel, Isaac
    Avanzini, Federico
    PROCEEDINGS OF THE 17TH INTERNATIONAL AUDIO MOSTLY CONFERENCE, AM 2022, 2022, : 36 - 43