On the Aα--spectra of graphs and the relation between Aα- and Aα--spectra

被引:0
|
作者
Fakieh, Wafaa [1 ]
Alkhamisi, Zakeiah [1 ]
Alashwali, Hanaa [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
Laplacian; singnless Laplacian; A(alpha)--spectral radius; A(alpha)-matrix; sum of powers of A(alpha)-eigenvalues; A(ALPHA)-SPECTRAL RADIUS; MATRIX;
D O I
10.3934/math.2024221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with adjacency matrix A(G), and let D(G) be the diagonal matrix of the degrees of G. For any real number alpha is an element of [0, 1], Nikiforov defined the A(alpha)-matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G). The eigenvalues of the matrix A(alpha)(G) form the A(alpha)-spectrum of G. The A(alpha)-spectral radius of G is the largest eigenvalue of A(alpha)(G) denoted by p alpha(G). In this paper, we propose the A alpha--matrix of G as A(alpha)-(G) = alpha D(G) + (alpha - 1)A(G), 0 < alpha < 1. Let the A(alpha)--spectral radius of G be denoted by il alpha-(G), and let Sf alpha(G) and S alpha- f (G) be the sum of the fth powers of the A(alpha)and A(alpha)- eigenvalues of G, respectively. We determine the A(alpha)--spectra of some graphs and obtain some bounds of the A(alpha)--spectral radius. Moreover, we establish a relationship between the A(alpha)-spectral radius and A(alpha)--spectral radius. Indeed, for alpha is an element of (21,1), we show that il alpha- < p alpha, and we prove that if G is connected, then the equality holds if and only if G is bipartite. Employing this relation, we obtain some upper bounds of il alpha-(G), and we prove that the A(alpha)--spectrum and A(alpha)-spectrum are equal if and only if G is a bipartite connected graph. Furthermore, we generalize the relation established by S. Akbari et al. in (2010) as follows: for alpha is an element of [21, 1), if 0 < f< 1 or 2 < f < 3, then Sf alpha(G) >= S alpha- f (G), and if 1 < f < 2, then Sf alpha(G) < S alpha- f (G), where the equality holds if and only if G is a bipartite graph such that f g {1, 2, 3}.
引用
收藏
页码:4587 / 4603
页数:17
相关论文
共 50 条
  • [41] On Spectra of Corona Graphs
    Sharma, Rohan
    Adhikari, Bibhas
    Mishra, Abhishek
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS (CALDAM 2015), 2015, 8959 : 126 - 137
  • [42] SPECTRA OF SOME GRAPHS
    WANG, K
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (01): : 57 - 60
  • [43] Binomial graphs and their spectra
    Christopher, PR
    Kennedy, JW
    FIBONACCI QUARTERLY, 1997, 35 (01): : 48 - 53
  • [44] SPECTRA OF CAYLEY GRAPHS
    BABAI, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (02) : 180 - 189
  • [45] Hamiltonian Spectra of Graphs
    Li-Da Tong
    Hao-Yu Yang
    Xuding Zhu
    Graphs and Combinatorics, 2019, 35 : 827 - 836
  • [46] On the distance spectra of graphs
    Aalipour, Ghodratollah
    Abiad, Aida
    Berikkyzy, Zhanar
    Cummings, Jay
    De Silva, Jessica
    Gao, Wei
    Heysse, Kristin
    Hogben, Leslie
    Kenter, Franklin H. J.
    Lin, Jephian C. -H.
    Tait, Michael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 497 : 66 - 87
  • [47] SPECTRA OF UNICYCLIC GRAPHS
    CVETKOVIC, D
    ROWLINSON, P
    GRAPHS AND COMBINATORICS, 1987, 3 (01) : 7 - 23
  • [48] ENDOMORPHISM SPECTRA OF GRAPHS
    BOTTCHER, M
    KNAUER, U
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 45 - 57
  • [49] On the spectra of tricyclic graphs
    Liu, Ruifang
    Jia, Huicai
    Shu, Jinlong
    ARS COMBINATORIA, 2011, 100 : 19 - 32
  • [50] Spectra of coxeter graphs
    J Algebraic Combinatorics, 1 (15-28):