On the Aα--spectra of graphs and the relation between Aα- and Aα--spectra

被引:0
|
作者
Fakieh, Wafaa [1 ]
Alkhamisi, Zakeiah [1 ]
Alashwali, Hanaa [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
Laplacian; singnless Laplacian; A(alpha)--spectral radius; A(alpha)-matrix; sum of powers of A(alpha)-eigenvalues; A(ALPHA)-SPECTRAL RADIUS; MATRIX;
D O I
10.3934/math.2024221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with adjacency matrix A(G), and let D(G) be the diagonal matrix of the degrees of G. For any real number alpha is an element of [0, 1], Nikiforov defined the A(alpha)-matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G). The eigenvalues of the matrix A(alpha)(G) form the A(alpha)-spectrum of G. The A(alpha)-spectral radius of G is the largest eigenvalue of A(alpha)(G) denoted by p alpha(G). In this paper, we propose the A alpha--matrix of G as A(alpha)-(G) = alpha D(G) + (alpha - 1)A(G), 0 < alpha < 1. Let the A(alpha)--spectral radius of G be denoted by il alpha-(G), and let Sf alpha(G) and S alpha- f (G) be the sum of the fth powers of the A(alpha)and A(alpha)- eigenvalues of G, respectively. We determine the A(alpha)--spectra of some graphs and obtain some bounds of the A(alpha)--spectral radius. Moreover, we establish a relationship between the A(alpha)-spectral radius and A(alpha)--spectral radius. Indeed, for alpha is an element of (21,1), we show that il alpha- < p alpha, and we prove that if G is connected, then the equality holds if and only if G is bipartite. Employing this relation, we obtain some upper bounds of il alpha-(G), and we prove that the A(alpha)--spectrum and A(alpha)-spectrum are equal if and only if G is a bipartite connected graph. Furthermore, we generalize the relation established by S. Akbari et al. in (2010) as follows: for alpha is an element of [21, 1), if 0 < f< 1 or 2 < f < 3, then Sf alpha(G) >= S alpha- f (G), and if 1 < f < 2, then Sf alpha(G) < S alpha- f (G), where the equality holds if and only if G is a bipartite graph such that f g {1, 2, 3}.
引用
收藏
页码:4587 / 4603
页数:17
相关论文
共 50 条
  • [31] The Spectra of Knodel Graphs
    Harutyunyan, Hovhannes A.
    Morosan, Calin D.
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2006, 30 (03): : 295 - 299
  • [32] The convexity spectra of graphs
    Tong, Li-Da
    Yen, Pei-Lan
    Farrugia, Alastair
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) : 1838 - 1845
  • [33] The Spectra of Coxeter Graphs
    A.E. Brouwer
    R.J. Riebeek
    Journal of Algebraic Combinatorics, 1998, 8 : 15 - 28
  • [34] The spectra of Coxeter graphs
    Brouwer, AE
    Riebeek, RJ
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (01) : 15 - 28
  • [35] Spectra of principal graphs
    Kodiyalam, V
    Sunder, VS
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (02) : 203 - 210
  • [36] On the Laplacian spectra of graphs
    Zhang, XD
    ARS COMBINATORIA, 2004, 72 : 191 - 198
  • [37] Graphs determined by their Aα-spectra
    Lin, Huiqiu
    Liu, Xiaogang
    Xue, Jie
    DISCRETE MATHEMATICS, 2019, 342 (02) : 441 - 450
  • [38] Simplices and Spectra of Graphs
    Bojan Mohar
    Igor Rivin
    Discrete & Computational Geometry, 2010, 43 : 516 - 521
  • [39] Spectra of Deza graphs
    Akbari, S.
    Ghodrati, A. H.
    Hosseinzadeh, M. A.
    Kabanov, V. V.
    Konstantinova, E., V
    Shalaginov, L., V
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (02): : 310 - 321
  • [40] Spectra of total graphs
    Bu, Tianyi
    Huang, Shaobin
    Discrete Applied Mathematics, 359 : 75 - 82