Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm

被引:7
|
作者
Zhang, Xiaohua [1 ,2 ]
Li, Haolin [1 ,3 ]
Zhang, Wenfeng [2 ,4 ]
Lopes, Antonio M. [5 ]
Wu, Xiaobo [6 ]
Chen, Liping [6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Peoples R China
[2] Guangdong Hong Kong Macao Greater Bay Area Agr Pro, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[4] Guangdong Agr Prod Cold Chain Transportat & Logist, Guangzhou 510225, Peoples R China
[5] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
关键词
FO equivalent circuit; parameter identification; beetle swarm optimization; OF-CHARGE ESTIMATION; STATE;
D O I
10.3390/mi14020413
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order (CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance spectroscopy (EIS). Secondly, the CBSO is used for model parameters' identification, and the model accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior when compared with the fractional-order BSO.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] An Improved SOC Algorithm for Lithium-ion Batteries in Electric Vehicles
    Qiao, Lixian
    Wang, Jing
    Zheng, Baixiang
    2013 IEEE 4TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2014, : 313 - 316
  • [42] Parameter Estimation of Lithium-Ion Batteries Dynamic Model Based on Water Cycle Algorithm
    Abou El-Ela, Radwa R.
    Elkholy, Mahmoud M.
    Selem, S., I
    Metwally, H. M. B.
    2017 NINETEENTH INTERNATIONAL MIDDLE-EAST POWER SYSTEMS CONFERENCE (MEPCON), 2017, : 127 - 133
  • [43] Parameter and order estimation algorithms and convergence analysis for lithium-ion batteries
    Hu, Chong
    Liu, Haibo
    Ji, Yan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (18) : 11411 - 11433
  • [44] Parameter identification and SOC estimation of lithium-ion battery based on AGCOA optimization
    Chu, Yunkun
    Li, Junhong
    Li, Lei
    Qiang, Yujian
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5964 - 5968
  • [45] Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF
    Chu, Yunkun
    Li, Junhong
    Gu, Juping
    Qiang, Yujian
    JOURNAL OF POWER ELECTRONICS, 2023, 23 (02) : 308 - 319
  • [46] Parameter identification and SOC estimation of lithium-ion batteries based on AGCOA-ASRCKF
    Yunkun Chu
    Junhong Li
    Juping Gu
    Yujian Qiang
    Journal of Power Electronics, 2023, 23 : 308 - 319
  • [47] Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter
    Xian, Weiming
    Long, Bing
    Li, Min
    Wang, Houjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (01) : 2 - 17
  • [48] Convergence boundaries of complex-order particle swarm optimization algorithm with weak stagnation: dynamical analysis
    Seyed Mehdi Abedi Pahnehkolaei
    Alireza Alfi
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2021, 106 : 725 - 743
  • [49] Convergence boundaries of complex-order particle swarm optimization algorithm with weak stagnation: dynamical analysis
    Pahnehkolaei, Seyed Mehdi Abedi
    Alfi, Alireza
    Machado, J. A. Tenreiro
    NONLINEAR DYNAMICS, 2021, 106 (01) : 725 - 743
  • [50] Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries
    Conte, Francesco
    Giallongo, Marco
    Kaza, Daniele
    Natrella, Gianluca
    Tachibana, Ryohei
    Tsuji, Shinji
    Silvestro, Federico
    Vichi, Giovanni
    ENERGIES, 2024, 17 (10)