Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm

被引:7
|
作者
Zhang, Xiaohua [1 ,2 ]
Li, Haolin [1 ,3 ]
Zhang, Wenfeng [2 ,4 ]
Lopes, Antonio M. [5 ]
Wu, Xiaobo [6 ]
Chen, Liping [6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Peoples R China
[2] Guangdong Hong Kong Macao Greater Bay Area Agr Pro, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[4] Guangdong Agr Prod Cold Chain Transportat & Logist, Guangzhou 510225, Peoples R China
[5] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
关键词
FO equivalent circuit; parameter identification; beetle swarm optimization; OF-CHARGE ESTIMATION; STATE;
D O I
10.3390/mi14020413
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order (CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance spectroscopy (EIS). Secondly, the CBSO is used for model parameters' identification, and the model accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior when compared with the fractional-order BSO.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Parameter Identification of Fractional-order Model for Lithium-ion Batteries via a Neighborhood Differential Evolution Algorithm
    Yu, Kun-Jie
    Zhong, Ya-Zhe
    Yang, Duo
    Liang, Jing
    Liao, Yue-Feng
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1772 - 1777
  • [22] Equivalent Circuit Modeling and Parameter Identification for Lithium-ion Batteries Based on Improved Barnacle Mating Optimizer
    Li, Jiarong
    Lin, Cheng-Jian
    Wang, Haiyu
    Kan, Jiarong
    SENSORS AND MATERIALS, 2022, 34 (09) : 3649 - 3670
  • [23] A simplified fractional order impedance model and parameter identification method for lithium-ion batteries
    Yang, Qingxia
    Xu, Jun
    Cao, Binggang
    Li, Xiuqing
    PLOS ONE, 2017, 12 (02):
  • [24] An Online Condition-Based Parameter Identification Switching Algorithm for Lithium-Ion Batteries in Electric Vehicles
    Huang, Cong-Sheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1701 - 1709
  • [25] Parameter Estimation for Lithium-ion Batteries Based on the Weighted Gradient Descent Algorithm
    Hu, Chong
    Ji, Yan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4789 - 4794
  • [26] Lithium plating detection of lithium-ion batteries based on the improved variance entropy algorithm
    Chen, Yingjie
    Zhang, Huaqin
    Hong, Jichao
    Hou, Yankai
    Yang, Jingsong
    Zhang, Chi
    Ma, Shikun
    Zhang, Xinyang
    Yang, Haixu
    Liang, Fengwei
    Li, Kerui
    ENERGY, 2024, 299
  • [27] Particle swarm optimization algorithm using complex-order derivative concept: A comprehensive study
    Pahnehkolaei, Seyed Mehdi Abedi
    Alfi, Alireza
    Machado, J. A. Tenreiro
    APPLIED SOFT COMPUTING, 2021, 111
  • [28] Novel Parameter Identification Method for Lithium-Ion Batteries Based on Curve Fitting
    Lukic, Milos
    Giangrande, Paolo
    Klumpner, Christian
    Galea, Michael
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [29] Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method
    Rahman, Md Ashiqur
    Anwar, Sohel
    Izadian, Afshin
    JOURNAL OF POWER SOURCES, 2016, 307 : 86 - 97
  • [30] On Parameter Identification of an Equivalent Circuit Model for Lithium-Ion Batteries
    Tian, Ning
    Wang, Yebin
    Chen, Jian
    Fang, Huazhen
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 187 - 192