On Almost Rational Finsler Metrics

被引:0
|
作者
Taha, Ebtsam H. [1 ,2 ]
Tiwari, Bankteshwar [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[2] Harish Chandra Res Inst, Chhatnag Rd, Jhunsi 211019, Allahabad, India
[3] Banaras Hindu Univ, Inst Sci, DST CIMS, Varanasi 221005, India
关键词
m-th root metric; Almost rational Finsler metric; (a; beta)-metric; Einstein metric; Generalized Kropina change; Geodesic spray;
D O I
10.1007/s41980-023-00748-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a special class of Finsler metrics which we refer to as Almost Rational Finsler metrics (shortly, AR-Finsler metrics). We give necessary and sufficient conditions for an AR-Finsler manifold (M, F) to be Riemannian. The rationality of some Finsler geometric objects such as Cartan torsion, geodesic spray, Landsberg curvature and S-curvature is investigated. For a particular subfamily of AR-Finsler metrics we have proved that if F has isotropic S-curvature, then the S-curvature vanishes identically; if F has isotropic mean Landsberg curvature, then it is weakly Landsberg; if F is an Einstein metric, then it is Ricci-flat. Moreover, there exists no Randers AR-Finsler metric. Finally, we provide some nontrivial examples of AR-Finsler metrics.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On the definition and examples of Finsler metrics
    Angel Javaloyes, Miguel
    Sanchez, Miguel
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (03) : 813 - 858
  • [32] A NEW CLASS OF FINSLER METRICS
    Rajabi, Tahere
    Sadeghzadeh, Nasrin
    MATEMATICKI VESNIK, 2021, 73 (01): : 1 - 13
  • [33] ON A SPECIAL CLASS OF FINSLER METRICS
    Tayebi, A.
    Peyghan, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2009, 33 (A2): : 179 - 186
  • [34] Finsler metrics on symmetric cones
    Yongdo Lim
    Mathematische Annalen, 2000, 316 : 379 - 389
  • [35] Finsler metrics and action potentials
    Iturriaga, R
    Sánchez-Morgado, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3311 - 3316
  • [36] On dually flat Finsler metrics
    Li, Benling
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (06) : 718 - 724
  • [37] On conformal complex Finsler metrics
    Li, Hongjun
    Qiu, Chunhui
    Xia, Hongchuan
    Zhong, Guozhu
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (07) : 1517 - 1530
  • [38] Characterizations of Complex Finsler Metrics
    Hongjun Li
    Hongchuan Xia
    The Journal of Geometric Analysis, 2023, 33
  • [39] On a projective class of Finsler metrics
    Najafi, B.
    Shen, Zhongmin
    Tayebi, Akbar
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 70 (1-2): : 211 - 219
  • [40] On Cartan torsion of Finsler metrics
    Tayebi, Akbar
    Sadeghi, Hassan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (02): : 461 - 471