On Almost Rational Finsler Metrics

被引:0
|
作者
Taha, Ebtsam H. [1 ,2 ]
Tiwari, Bankteshwar [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[2] Harish Chandra Res Inst, Chhatnag Rd, Jhunsi 211019, Allahabad, India
[3] Banaras Hindu Univ, Inst Sci, DST CIMS, Varanasi 221005, India
关键词
m-th root metric; Almost rational Finsler metric; (a; beta)-metric; Einstein metric; Generalized Kropina change; Geodesic spray;
D O I
10.1007/s41980-023-00748-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a special class of Finsler metrics which we refer to as Almost Rational Finsler metrics (shortly, AR-Finsler metrics). We give necessary and sufficient conditions for an AR-Finsler manifold (M, F) to be Riemannian. The rationality of some Finsler geometric objects such as Cartan torsion, geodesic spray, Landsberg curvature and S-curvature is investigated. For a particular subfamily of AR-Finsler metrics we have proved that if F has isotropic S-curvature, then the S-curvature vanishes identically; if F has isotropic mean Landsberg curvature, then it is weakly Landsberg; if F is an Einstein metric, then it is Ricci-flat. Moreover, there exists no Randers AR-Finsler metric. Finally, we provide some nontrivial examples of AR-Finsler metrics.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Deformation of complex Finsler metrics
    Szasz-Friedl, Annamaria
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 229 - 244
  • [22] On Finsler metrics of quadratic curvature
    Sadeghzadeh, Nasrin
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 75 - 83
  • [23] On a class of Einstein Finsler metrics
    Shen, Zhongmin
    Yu, Changtao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (04)
  • [24] On conformal complex Finsler metrics
    Hongjun Li
    Chunhui Qiu
    Hongchuan Xia
    Guozhu Zhong
    Science China Mathematics, 2022, 65 : 1517 - 1530
  • [25] Classes of Finsler spaces with (α,ß)-metrics
    Sabau, VS
    Shimada, H
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 47 (01) : 31 - 48
  • [26] Riemannian approximation of Finsler metrics
    Braides, A
    Buttazzo, G
    Fragalà, I
    ASYMPTOTIC ANALYSIS, 2002, 31 (02) : 177 - 187
  • [27] ON A CLASS OF DOUGLAS FINSLER METRICS
    朱红梅
    Acta Mathematica Scientia, 2018, (02) : 695 - 708
  • [28] Finsler metrics on symmetric cones
    Lim, YD
    MATHEMATISCHE ANNALEN, 2000, 316 (02) : 379 - 389
  • [29] Weakly Douglas Finsler metrics
    Atashafrouz, M.
    Najafi, B.
    Tayebi, A.
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (02) : 194 - 200
  • [30] FINSLER METRICS WITH REVERSIBLE GEODESICS
    Xia, Qiaoling
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (06) : 1335 - 1349