Development and application of a semi-detailed model for lithium-Ion battery thermal runaway chemistry

被引:3
|
作者
Yang, Shiyou [1 ]
Yang, Ruicheng [2 ]
机构
[1] Ford Motor Co, Res & Adv Engn, 2101 Village Rd, Dearborn, MI 48124 USA
[2] Univ Michigan Ann Arbor, Coll Literature Sci & Art, 500 South State St, Ann Arbor, MI 48109 USA
关键词
Lithium-ion-battery; Thermal runaway; Battery cell chemistry; Venting gas; Semi-detailed model; NCM cathode; Arrhenius equation; ACCELERATING RATE CALORIMETRY; CATHODE MATERIALS; GAS GENERATION; ELECTROLYTE; LI; STABILITY; BEHAVIOR; FIRE; MECHANISM; GRAPHITE;
D O I
10.1016/j.applthermaleng.2023.121991
中图分类号
O414.1 [热力学];
学科分类号
摘要
To overcome the disadvantages of detailed methodologies and existing simple methodologies for modeling lithium-ion battery thermal runaway chemistry, a semi-detailed model has been developed in the present work. This is important for mitigating battery thermal runaway. The semi-detailed model contains two parts: a 'global part' and an 'elementary reaction mechanism part'. The thermal kinetics parameters of a recently published model are improved so that it can be selected for the 'global part' to model NCM811 (LiNi0.8Co0.1Mn0.1O2), NCM622 (LiNi0.6Co0.2Mn0.2O2), and NCM532 (LiNi0.5Co0.3Mn0.2O2). Temperature and heat release evolutions during battery thermal runaway can be obtained from the simulation of the 'global part'. In the 'elementary reaction mechanism part', 53 reactions with frequency factors and activation energies have been proposed and adopted for describing flammable gas formation, lithium-ion consumption, gas phase interaction, and lithium-ion gas interaction during battery thermal runway. Detailed processes for coupling the 'global part' and the 'elementary reaction mechanism part' as well as solving the 53 reactions are developed, which is the major novelty of this work. Through the coupling of the two parts, chemical venting gas species generation and lithium-ion consumption during the transient thermal runaway process of an NCM811PC (LiNi0.8Co0.1Mn0.1O2 poly-crystalline) pouch cell with nail penetration were calculated and compared with available experimental data in the literature. The comparison shows that the semi-detailed model can give correct species trends, indicating the two parts and their coupling in the semi-detailed model of the present work are reliable. The simulation results with transient venting gas chemical species provide useful insights for stopping or delaying battery thermal runaway.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [42] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [43] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Yawen Li
    Lihua Jiang
    Zonghou Huang
    Zhuangzhuang Jia
    Peng Qin
    Qingsong Wang
    Fire Technology, 2023, 59 : 1137 - 1155
  • [44] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087
  • [45] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [46] Theoretical and Numerical Analysis for Thermal Runaway Front Velocity of Lithium-ion Battery
    Zhang, Fangshu
    Feng, Xuning
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (12): : 3771 - 3776
  • [47] Thermal Runaway Analysis of NCM Lithium-Ion Battery in Humid and Hot Environment
    Zhang P.-H.
    Yuan W.
    Wei Z.-Y.
    Li Z.-J.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2020, 41 (06): : 881 - 887
  • [48] Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery
    Liu, Jialong
    Wang, Zhirong
    Bai, Jinlong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 70 : 531 - 541
  • [49] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [50] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Li, Yawen
    Jiang, Lihua
    Huang, Zonghou
    Jia, Zhuangzhuang
    Qin, Peng
    Wang, Qingsong
    FIRE TECHNOLOGY, 2023, 59 (03) : 1137 - 1155