Development and application of a semi-detailed model for lithium-Ion battery thermal runaway chemistry

被引:3
|
作者
Yang, Shiyou [1 ]
Yang, Ruicheng [2 ]
机构
[1] Ford Motor Co, Res & Adv Engn, 2101 Village Rd, Dearborn, MI 48124 USA
[2] Univ Michigan Ann Arbor, Coll Literature Sci & Art, 500 South State St, Ann Arbor, MI 48109 USA
关键词
Lithium-ion-battery; Thermal runaway; Battery cell chemistry; Venting gas; Semi-detailed model; NCM cathode; Arrhenius equation; ACCELERATING RATE CALORIMETRY; CATHODE MATERIALS; GAS GENERATION; ELECTROLYTE; LI; STABILITY; BEHAVIOR; FIRE; MECHANISM; GRAPHITE;
D O I
10.1016/j.applthermaleng.2023.121991
中图分类号
O414.1 [热力学];
学科分类号
摘要
To overcome the disadvantages of detailed methodologies and existing simple methodologies for modeling lithium-ion battery thermal runaway chemistry, a semi-detailed model has been developed in the present work. This is important for mitigating battery thermal runaway. The semi-detailed model contains two parts: a 'global part' and an 'elementary reaction mechanism part'. The thermal kinetics parameters of a recently published model are improved so that it can be selected for the 'global part' to model NCM811 (LiNi0.8Co0.1Mn0.1O2), NCM622 (LiNi0.6Co0.2Mn0.2O2), and NCM532 (LiNi0.5Co0.3Mn0.2O2). Temperature and heat release evolutions during battery thermal runaway can be obtained from the simulation of the 'global part'. In the 'elementary reaction mechanism part', 53 reactions with frequency factors and activation energies have been proposed and adopted for describing flammable gas formation, lithium-ion consumption, gas phase interaction, and lithium-ion gas interaction during battery thermal runway. Detailed processes for coupling the 'global part' and the 'elementary reaction mechanism part' as well as solving the 53 reactions are developed, which is the major novelty of this work. Through the coupling of the two parts, chemical venting gas species generation and lithium-ion consumption during the transient thermal runaway process of an NCM811PC (LiNi0.8Co0.1Mn0.1O2 poly-crystalline) pouch cell with nail penetration were calculated and compared with available experimental data in the literature. The comparison shows that the semi-detailed model can give correct species trends, indicating the two parts and their coupling in the semi-detailed model of the present work are reliable. The simulation results with transient venting gas chemical species provide useful insights for stopping or delaying battery thermal runaway.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The critical characteristics and transition process of lithium-ion battery thermal runaway
    Huang, Peifeng
    Yao, Caixia
    Mao, Binbin
    Wang, Qingsong
    Sun, Jinhua
    Bai, Zhonghao
    ENERGY, 2020, 213
  • [22] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [23] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [24] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [25] Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Qiao, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30956 - 30963
  • [26] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22
  • [27] Utilizing Lithium-Ion Battery Thermal Runaway for an Advanced Propulsion: Theory Development and Case Studies
    Kim, Minseok
    Rajak, Rajendra
    Lim, Daehong
    Yoh, Jai-ick
    JOURNAL OF THE KOREAN SOCIETY OF COMBUSTION, 2024, 29 (04) : 21 - 33
  • [28] detailed Electro-thermal model of an NMC lithium-ion prismatic battery cell
    Madaoui, Said
    Vinassa, Jean -Michel
    Sabatier, Jocelyn
    Guillemard, Franxk
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [29] Multiparameter Comprehensive Thermal Runaway Warning Model of Lithium-Ion Battery under Overcharge Condition
    Wang, Jianfeng
    Li, Yuhan
    Liu, Fen
    Yang, Na
    Ren, Xutong
    Shi, Mengyu
    Chen, Bowei
    Jia, Yongkai
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [30] Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79