Exploring User and Item Representation, Justification Generation, and Data Augmentation for Conversational Recommender Systems

被引:0
|
作者
Volokhin, Sergey [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
关键词
conversational recommender systems; context representation; data augmentation;
D O I
10.1145/3539618.3591795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:3496 / 3496
页数:1
相关论文
共 50 条
  • [41] Exploring Data Augmentation for Code Generation Tasks
    Chen, Pinzhen
    Lampouras, Gerasimos
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1542 - 1550
  • [42] Knowledge Graphs and Pretrained Language Models Enhanced Representation Learning for Conversational Recommender Systems
    Qiu, Zhangchi
    Tao, Ye
    Pan, Shirui
    Liew, Alan Wee-Chung
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [43] Beyond Single Items: Exploring User Preferences in Item Sets with the Conversational Playlist Curation Dataset
    Chaganty, Arun Tejasvi
    Leszczynski, Megan
    Zhang, Shu
    Ganti, Ravi
    Balog, Krisztian
    Radlinski, Filip
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2754 - 2764
  • [44] Exploring Categorizations of Algorithmic Affordances in Graphical User Interfaces of Recommender Systems
    Bartels, Ester
    Smits, Aletta
    Detweiler, Chris
    van der Stappen, Esther
    van Rossen, Suzanne
    Shayan, Shakila
    Pott, Katja
    Cardona, Karine
    Ziegler, Jurgen
    van Turnhout, Koen
    DESIGN FOR EQUALITY AND JUSTICE, INTERACT 2023, PT II, 2024, 14536 : 173 - 184
  • [45] Hybrid Reciprocal Recommender Systems: Integrating Item-to-User Principles in Reciprocal Recommendation
    Neve, James
    Palomares, Ivan
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 848 - 853
  • [46] Engaging end-user driven recommender systems: personalization through web augmentation
    Wischenbart, Martin
    Firmenich, Sergio
    Rossi, Gustavo
    Bosetti, Gabriela
    Kapsammer, Elisabeth
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 6785 - 6809
  • [47] Survey on Mobile Recommender Systems Based on User Trajectory Data
    Meng X.-W.
    Li R.-C.
    Zhang Y.-J.
    Ji W.-Y.
    Meng, Xiang-Wu (mengxw@bupt.edu.cn), 2018, Chinese Academy of Sciences (29): : 3111 - 3133
  • [48] Engaging end-user driven recommender systems: personalization through web augmentation
    Martin Wischenbart
    Sergio Firmenich
    Gustavo Rossi
    Gabriela Bosetti
    Elisabeth Kapsammer
    Multimedia Tools and Applications, 2021, 80 : 6785 - 6809
  • [49] Relieving popularity bias in recommender systems via user group-level augmentation
    He, Ming
    Zhang, Zihao
    Zhang, Han
    Liu, Chang
    APPLIED SOFT COMPUTING, 2025, 169
  • [50] Item feature refinement using matrix factorization and boosted learning based user profile generation for content-based recommender systems
    Pujahari, Abinash
    Sisodia, Dilip Singh
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206