Exploring User and Item Representation, Justification Generation, and Data Augmentation for Conversational Recommender Systems

被引:0
|
作者
Volokhin, Sergey [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
关键词
conversational recommender systems; context representation; data augmentation;
D O I
10.1145/3539618.3591795
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:3496 / 3496
页数:1
相关论文
共 50 条
  • [21] An investigation on the user interaction modes of conversational recommender systems for the music domain
    Narducci, Fedelucio
    Basile, Pierpaolo
    de Gemmis, Marco
    Lops, Pasquale
    Semeraro, Giovanni
    USER MODELING AND USER-ADAPTED INTERACTION, 2020, 30 (02) : 251 - 284
  • [22] An investigation on the user interaction modes of conversational recommender systems for the music domain
    Fedelucio Narducci
    Pierpaolo Basile
    Marco de Gemmis
    Pasquale Lops
    Giovanni Semeraro
    User Modeling and User-Adapted Interaction, 2020, 30 : 251 - 284
  • [23] A User Preference and Intent Extraction Framework for Explainable Conversational Recommender Systems
    Park, Jieun
    Kim, Sangyeon
    Lee, Sangwon
    COMPANION OF THE 2023 ACM SIGCHI SYMPOSIUM ON ENGINEERING INTERACTIVE COMPUTING SYSTEMS, EICS 2023, 2023, : 16 - 23
  • [24] A comparative study of compound critique generation in conversational recommender systems
    Zhang, Jiyong
    Pu, Pearl
    ADAPTIVE HYPERMEDIA AND ADAPTIVE WEB-BASED SYSTEMS, PROCEEDINGS, 2006, 4018 : 234 - 243
  • [25] Data quality in recommender systems: the impact of completeness of item content data on prediction accuracy of recommender systems
    Heinrich, Bernd
    Hopf, Marcus
    Lohninger, Daniel
    Schiller, Alexander
    Szubartowicz, Michael
    ELECTRONIC MARKETS, 2021, 31 (02) : 389 - 409
  • [26] Data quality in recommender systems: the impact of completeness of item content data on prediction accuracy of recommender systems
    Bernd Heinrich
    Marcus Hopf
    Daniel Lohninger
    Alexander Schiller
    Michael Szubartowicz
    Electronic Markets, 2021, 31 : 389 - 409
  • [27] FuseRec: fusing user and item homophily modeling with temporal recommender systems
    Kanika Narang
    Yitong Song
    Alexander Schwing
    Hari Sundaram
    Data Mining and Knowledge Discovery, 2021, 35 : 837 - 862
  • [28] FuseRec: fusing user and item homophily modeling with temporal recommender systems
    Narang, Kanika
    Song, Yitong
    Schwing, Alexander
    Sundaram, Hari
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (03) : 837 - 862
  • [29] Bridging User Interest to Item Content for Recommender Systems: An Optimization Model
    Zhang, Haijun
    Sun, Yanfang
    Zhao, Mingbo
    Chow, Tommy W. S.
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (10) : 4268 - 4280
  • [30] Understanding user intent modeling for conversational recommender systems: a systematic literature review
    Farshidi, Siamak
    Rezaee, Kiyan
    Mazaheri, Sara
    Rahimi, Amir Hossein
    Dadashzadeh, Ali
    Ziabakhsh, Morteza
    Eskandari, Sadegh
    Jansen, Slinger
    USER MODELING AND USER-ADAPTED INTERACTION, 2024, 34 (05) : 1643 - 1706