Quantile regression with multiple proxy variables

被引:0
|
作者
Go, Dongyoung [1 ,2 ]
Hoon Jin, Ick [1 ,2 ]
Im, Jongho [1 ,2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, Seoul, South Korea
[2] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
来源
STAT | 2023年 / 12卷 / 01期
基金
新加坡国家研究基金会;
关键词
data integration; measurement error model; natural cubic spline; record linkage; NONPARAMETRIC REGRESSION; ERRORS; INFERENCE; INCOME; SELECTION; DESIGN;
D O I
10.1002/sta4.547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data integration has become increasingly popular owing to the availability of multiple data sources. This study considered quantile regression estimation when a key covariate had multiple proxies across several datasets. In a unified estimation procedure, the proposed method incorporates multiple proxies that have both linear and nonlinear relationships with the unobserved covariates. The proposed approach allows the inference of both the quantile function and unobserved covariates and does not require the quantile function's linearity. Simulation studies have demonstrated that this methodology successfully integrates multiple proxies and reveals quantile relationships for a wide range of nonlinear data. The proposed method is applied to administrative data obtained from the Survey of Household Finances and Living Conditions provided by Statistics Korea, to specify the relationship between assets and salary income in the presence of multiple income records.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] BINARY VARIABLES MULTIPLE-REGRESSION
    KABE, DG
    SCANDINAVIAN JOURNAL OF STATISTICS, 1978, 5 (01) : 72 - 74
  • [42] Quantile regression
    Koenker, R
    Hallock, KF
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [43] Quantile regression
    Karlsson, Andreas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [44] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452
  • [45] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [46] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [47] Quantile Regression for Dynamic Panel Data Using Hausman–Taylor Instrumental Variables
    Li Tao
    Yuanjie Zhang
    Maozai Tian
    Computational Economics, 2019, 53 : 1033 - 1069
  • [48] A quantile regression approach for estimating panel data models using instrumental variables
    Harding, Matthew
    Lamarche, Carlos
    ECONOMICS LETTERS, 2009, 104 (03) : 133 - 135
  • [49] Calibrated Multiple-Output Quantile Regression with Representation Learning
    Feldman, Shai
    Bates, Stephen
    Romano, Yaniv
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [50] Multiple-output quantile regression through optimal quantization
    Charlier, Isabelle
    Paindaveine, Davy
    Saracco, Jerome
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 250 - 278