Quantile regression with multiple proxy variables

被引:0
|
作者
Go, Dongyoung [1 ,2 ]
Hoon Jin, Ick [1 ,2 ]
Im, Jongho [1 ,2 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, Seoul, South Korea
[2] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
来源
STAT | 2023年 / 12卷 / 01期
基金
新加坡国家研究基金会;
关键词
data integration; measurement error model; natural cubic spline; record linkage; NONPARAMETRIC REGRESSION; ERRORS; INFERENCE; INCOME; SELECTION; DESIGN;
D O I
10.1002/sta4.547
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data integration has become increasingly popular owing to the availability of multiple data sources. This study considered quantile regression estimation when a key covariate had multiple proxies across several datasets. In a unified estimation procedure, the proposed method incorporates multiple proxies that have both linear and nonlinear relationships with the unobserved covariates. The proposed approach allows the inference of both the quantile function and unobserved covariates and does not require the quantile function's linearity. Simulation studies have demonstrated that this methodology successfully integrates multiple proxies and reveals quantile relationships for a wide range of nonlinear data. The proposed method is applied to administrative data obtained from the Survey of Household Finances and Living Conditions provided by Statistics Korea, to specify the relationship between assets and salary income in the presence of multiple income records.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mean estimation using robust quantile regression with two auxiliary variables
    Shahzad, U.
    Ahmad, I.
    Almanjahie, I. M.
    Al-Noor, N. H.
    Hanif, M.
    SCIENTIA IRANICA, 2023, 30 (03) : 1245 - 1254
  • [32] Modelling the effects of meteorological variables on ozone concentration - a quantile regression approach
    Baur, D
    Saisana, M
    Schulze, N
    ATMOSPHERIC ENVIRONMENT, 2004, 38 (28) : 4689 - 4699
  • [33] First-stage analysis for instrumental-variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    STATA JOURNAL, 2024, 24 (02): : 273 - 286
  • [34] A robust quantile regression for bounded variables based on the Kumaraswamy Rectangular distribution
    Castro, Matheus
    Azevedo, Caio
    Nobre, Juvencio
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [35] A Parametric Quantile Regression Model for Asymmetric Response Variables on the Real Line
    Gallardo, Diego, I
    Bourguignon, Marcelo
    Galarza, Christian E.
    Gomez, Hector W.
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 16
  • [36] REPRESENTATIVE VARIABLES IN A MULTIPLE REGRESSION MODEL
    Popescu, Barbu Bogdan
    Totan, Lavinia Stefania
    ROMANIAN STATISTICAL REVIEW, 2013, (01) : 82 - 85
  • [37] Isotonic Regression for Multiple Independent Variables
    Quentin F. Stout
    Algorithmica, 2015, 71 : 450 - 470
  • [38] Isotonic Regression for Multiple Independent Variables
    Stout, Quentin F.
    ALGORITHMICA, 2015, 71 (02) : 450 - 470
  • [39] SELECTION OF VARIABLES IN MULTIPLE REGRESSION ANALYSIS
    HALINSKI, RS
    FELDT, LS
    JOURNAL OF EDUCATIONAL MEASUREMENT, 1970, 7 (03) : 151 - 157
  • [40] Multiple Regression With Discrete Dependent Variables
    Randolph, Karen
    RESEARCH ON SOCIAL WORK PRACTICE, 2010, 20 (06) : 726 - 727