共 50 条
A S-phenyl Benzenethiosulfonate (SPBS)-containing electrolyte enhances the temperature performance of LiNi0.8Co0.1Mn0.1O2/graphite batteries by regulating the electrode interfaces
被引:10
|作者:
Li, Haijia
[1
]
Zeng, Xueyi
[1
]
He, Xin
[1
]
Wang, Wenlian
[1
]
Fan, Weizhen
[1
,2
]
Fan, Chaojun
[2
]
Ma, Zhen
[1
]
Nan, Junmin
[1
]
机构:
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] Guangzhou Tinci Mat Technol Co Ltd, Guangzhou 510760, Peoples R China
关键词:
Sulfur-containing additive;
Temperature performance;
S-phenyl Benzenethiosulfonate;
LITHIUM-ION BATTERY;
GRAPHITE/ELECTROLYTE INTERFACE;
ELECTROCHEMICAL PERFORMANCE;
STABILITY;
CATHODE;
FILM;
ISSUES;
D O I:
10.1016/j.jpowsour.2023.233441
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
A sulfur-containing compound S-phenyl Benzenethiosulfonate (SPBS) is developed as an electrolyte additive to improve the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 (NCM811)/graphite lithium-ion batteries (LIBs) in a wide temperature range. Compared with the batteries without SPBS, the capacity retention of the batteries containing SPBS increases from 58.15% to 91.48% after 1100 cycles at 25 degrees C and from 70.09% to 80.68% after 550 cycles at 45 degrees C. And after stored at 60 degrees C for 7 days, 14 days, and 28 days, the capacity retention rate and capacity recovery rate of the batteries containing SPBS are obviously improved. In addition, it is also shown that SPBS can inhibit the internal polarization and capacity attenuation of the batteries during lowtemperature cycling, the capacity retention of the batteries containing SPBS increases from 46.3% to 81.9% after 100 cycles at -10 degrees C. The experimental and theoretical results demonstrate that SPBS facilitates the construction of high-quality electrode-electrolyte interfaces, reduces the electrolyte decomposition and inhibits the impedance increase. The excellent temperature performance of NCM811/graphite LIBs means the promising application prospect of SPBS-containing electrolyte.
引用
收藏
页数:11
相关论文