The functional electrolyte containing 2-fluorobenzenesulfonyl fluoride (2FF) additive enhances the performance of LiNi0.8Co0.1Mn0.1O2/graphite batteries by stabilizing the cathode interface

被引:7
|
作者
Hu, Huilin [1 ]
He, Xin [1 ]
Zeng, Xueyi [1 ]
Li, Haijia [1 ]
Sun, Chenhao [1 ]
Fan, Weizhen [1 ,2 ]
Ma, Zhen [1 ]
Nan, Junmin [1 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] Guangzhou Tinci Mat Technol Co Ltd, Guangzhou 510760, Peoples R China
关键词
Lithium-ion batteries; 2-Fluorobenzenesulfonyl fluoride; Functional electrolyte; Cathode interface; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; VOLTAGE; IMPROVE; IMPACT; LAYER;
D O I
10.1016/j.jpowsour.2023.233914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A functional electrolyte containing conventional carbonate esters solvents, LiPF6 salt, and novel 2-fluorobenze-nesulfonyl fluoride (2FF) additive is developed to stabilize the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface and enhance the performance of NCM811/graphite lithium-ion batteries (LIBs). It is indicated that due to the unique C-F and sulfonyl fluoride groups of 2FF, the NCM811/Li half batteries containing 2% 2FF electrolyte show the highest cycling performance, a coulombic efficiency of 98.4% and a capacity retention of 89.4% are obtained after 100 cycles at 0.5C. And compared to the pouch NCM811/graphite full batteries with blank electrolyte, the long cycle performance of the batteries with 2% 2FF is also increased after 500 cycles at 45 degrees C, the discharge capacity retention rate retains at 80.04% and the coulombic efficiency closes to 100%. The spectroscopic characterization and theoretical calculation demonstrate that the electrolyte with 2FF additive preferentially react and generate uniform CEI film. These results show that this 2FF-containing electrolyte can stabilize NCM811 cathode interface, revealing a promising prospect of the commercial application of high-nickel LIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 (02) : 387 - 398
  • [2] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Zhu, Xiao-Feng
    Li, Xiu
    Liang, Tian-Quan
    Liu, Xin-Hua
    Ma, Jian-Min
    RARE METALS, 2023, 42 (02) : 387 - 398
  • [3] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 : 387 - 398
  • [4] Isocyanoethyl Methacrylate (IMA) as a Bifunctional Electrolyte Additive for LiNi0.8Co0.1Mn0.1O2/Graphite Batteries with Enhanced Performance
    Lu, Jing
    Li, Shuai
    Jiang, Liqin
    Yang, Tianxiang
    Fan, Weizhen
    Wang, Wenlian
    Zhao, Xiaoyang
    Zuo, Xiaoxi
    Nan, Junmin
    CHEMELECTROCHEM, 2021, 8 (19) : 3716 - 3725
  • [5] NaH2PO4 as an Electrolyte Additive for Enhanced Thermal Stability of LiNi0.8Co0.1Mn0.1O2/Graphite Batteries
    Jo, Minsang
    Park, Seong-Hyo
    Lee, Hochun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [6] Borate-Functionalized Disiloxane as Effective Electrolyte Additive for 4.5 V LiNi0.8Co0.1Mn0.1O2/Graphite Batteries
    Chen, Cheng
    Guo, Jiali
    Wu, Chunlei
    Duan, Xianjian
    Zhang, Lingzhi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (07) : 8733 - 8741
  • [7] Effects of Degradation on the Thermal Stability LiNi0.8Co0.1Mn0.1O2/Graphite Batteries
    Inoue, Takao
    Komagata, Shogo
    Itou, Yuichi
    Kondo, Hiroki
    ELECTROCHEMISTRY, 2022, 90 (11)
  • [8] Roles of Nonflammable Organic Liquid Electrolyte in Stabilizing the Interface of the LiNi0.8Co0.1Mn0.1O2 Cathode at 4.5 V and Improving the Battery Performance
    Pham, Hieu Quang
    Tran, Yen Hai Thi
    Han, Jisoo
    Song, Seung-Wan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (01): : 175 - 185
  • [9] Construction of a Stable LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Interface by a Multifunctional Organosilicon Electrolyte Additive
    Zheng, Yezhen
    Xu, Ningbo
    Chen, Shijian
    Liao, Ying
    Zhong, Guiming
    Zhang, Zhongru
    Yang, Yong
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) : 2837 - 2845
  • [10] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259