Hierarchical Bayesian inference of globular cluster properties

被引:2
|
作者
Wen, Robin Y. [1 ,2 ]
Speagle, Joshua S. [1 ,3 ,4 ,5 ]
Webb, Jeremy J. [1 ]
Eadie, Gwendolyn M. [1 ,3 ]
机构
[1] Univ Toronto, David A Dunlap Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[2] CALTECH, 1200E Calif Blvd, Pasadena, CA 91125 USA
[3] Univ Toronto, Dept Stat Sci, 9th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
[4] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[5] Univ Toronto, Data Sci Inst, 17th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
globular clusters: general; methods: data analysis; methods: statistical; STAR-CLUSTERS; MILKY-WAY; GAIA; PROFILES; MODELS; KINEMATICS; SYSTEM; PARAMETERS; ANISOTROPY; CATALOG;
D O I
10.1093/mnras/stad3536
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a hierarchical Bayesian inference approach to estimating the structural properties and the phase-space centre of a globular cluster (GC) given the spatial and kinematic information of its stars based on lowered isothermal cluster models. As a first step towards more realistic modelling of GCs, we built a differentiable, accurate emulator of the lowered isothermal distribution function using interpolation. The reliable gradient information provided by the emulator allows the use of Hamiltonian Monte Carlo methods to sample large Bayesian models with hundreds of parameters, thereby enabling inference on hierarchical models. We explore the use of hierarchical Bayesian modelling to address several issues encountered in observations of GC including an unknown GC centre, incomplete data, and measurement errors. Our approach not only avoids the common technique of radial binning but also incorporates the aforementioned uncertainties in a robust and statistically consistent way. Through demonstrating the reliability of our hierarchical Bayesian model on simulations, our work lays out the foundation for more realistic and complex modelling of real GC data.
引用
收藏
页码:4193 / 4208
页数:16
相关论文
共 50 条
  • [41] A coalescence-guided hierarchical Bayesian method for haplotype inference
    Zhang, Yu
    Niu, Tianhua
    Liu, Jun S.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 79 (02) : 313 - 322
  • [42] The neural dynamics of hierarchical Bayesian causal inference in multisensory perception
    Rohe, Tim
    Ehlis, Ann-Christine
    Noppeney, Uta
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [43] Hierarchical Kendall copulas: Properties and inference
    Brechmann, Eike Christian
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (01): : 78 - 108
  • [44] Hierarchical junction trees as the secondary structure for inference in Bayesian networks
    Wu, Dan
    Wu, Libing
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 706 - +
  • [45] A hierarchical Bayesian approach to regularization with application to the inference of relaxation spectra
    Kedari, Sayali R.
    Atluri, Gowtham
    Vemaganti, Kumar
    JOURNAL OF RHEOLOGY, 2022, 66 (01) : 125 - 145
  • [46] Applying a Bayesian hierarchical model in actuarial science:: Inference and ratemaking
    Perez-Sanchez, J. M.
    Sarabia-Alegria, J. M.
    Gomez-Deniz, E.
    Vazquez-Polo, F. J.
    DISTRIBUTION MODELS THEORY, 2006, : 233 - +
  • [47] A Bayesian Hierarchical Correlation Model for fMRI Cluster Analysis
    Gomez-Laberge, Camille
    Adler, Andy
    Cameron, Ian
    Thanh Nguyen
    Hogan, Matthew J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (07) : 1967 - 1976
  • [48] Receiver function deconvolution using transdimensional hierarchical Bayesian inference
    Kolb, J. M.
    Lekic, V.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 197 (03) : 1719 - 1735
  • [49] Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties
    Mapelli, Michela
    Dall'Amico, Marco
    Bouffanais, Yann
    Giacobbo, Nicola
    Sedda, Manuel Arca
    Artale, M. Celeste
    Ballone, Alessandro
    Di Carlo, Ugo N.
    Iorio, Giuliano
    Santoliquido, Filippo
    Torniamenti, Stefano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (01) : 339 - 358
  • [50] Effects of Binaries on Open Cluster Age Determination in Bayesian Inference
    Zhong-Mu Li
    Su Zhang
    Jing Chen
    Wen-Chang Zhao
    Wu You
    ResearchinAstronomyandAstrophysics, 2022, 22 (08) : 232 - 239