Hierarchical Bayesian inference of globular cluster properties

被引:2
|
作者
Wen, Robin Y. [1 ,2 ]
Speagle, Joshua S. [1 ,3 ,4 ,5 ]
Webb, Jeremy J. [1 ]
Eadie, Gwendolyn M. [1 ,3 ]
机构
[1] Univ Toronto, David A Dunlap Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[2] CALTECH, 1200E Calif Blvd, Pasadena, CA 91125 USA
[3] Univ Toronto, Dept Stat Sci, 9th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
[4] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[5] Univ Toronto, Data Sci Inst, 17th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
globular clusters: general; methods: data analysis; methods: statistical; STAR-CLUSTERS; MILKY-WAY; GAIA; PROFILES; MODELS; KINEMATICS; SYSTEM; PARAMETERS; ANISOTROPY; CATALOG;
D O I
10.1093/mnras/stad3536
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a hierarchical Bayesian inference approach to estimating the structural properties and the phase-space centre of a globular cluster (GC) given the spatial and kinematic information of its stars based on lowered isothermal cluster models. As a first step towards more realistic modelling of GCs, we built a differentiable, accurate emulator of the lowered isothermal distribution function using interpolation. The reliable gradient information provided by the emulator allows the use of Hamiltonian Monte Carlo methods to sample large Bayesian models with hundreds of parameters, thereby enabling inference on hierarchical models. We explore the use of hierarchical Bayesian modelling to address several issues encountered in observations of GC including an unknown GC centre, incomplete data, and measurement errors. Our approach not only avoids the common technique of radial binning but also incorporates the aforementioned uncertainties in a robust and statistically consistent way. Through demonstrating the reliability of our hierarchical Bayesian model on simulations, our work lays out the foundation for more realistic and complex modelling of real GC data.
引用
收藏
页码:4193 / 4208
页数:16
相关论文
共 50 条
  • [21] Hierarchical Bayesian Inference and Learning in Spiking Neural Networks
    Guo, Shangqi
    Yu, Zhaofei
    Deng, Fei
    Hu, Xiaolin
    Chen, Feng
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (01) : 133 - 145
  • [22] Sparse Bayesian Hierarchical Mixture of Experts and Variational Inference
    Iikubo, Yuji
    Horii, Shunsuke
    Matsushima, Toshiyasu
    PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 60 - 64
  • [23] Triply fuzzy function approximation for hierarchical Bayesian inference
    Osoba, Osonde
    Mitaim, Sanya
    Kosko, Bart
    FUZZY OPTIMIZATION AND DECISION MAKING, 2012, 11 (03) : 241 - 268
  • [24] Triply fuzzy function approximation for hierarchical Bayesian inference
    Osonde Osoba
    Sanya Mitaim
    Bart Kosko
    Fuzzy Optimization and Decision Making, 2012, 11 : 241 - 268
  • [25] IMPROVEMENT OF HUMAN RELIABILITY USING BAYESIAN HIERARCHICAL INFERENCE
    KELLY, CW
    BARCLAY, S
    PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1974, 7 (02): : 320 - 328
  • [26] Bayesian hierarchical models and inference for musical audio processing
    Peeling, Paul
    Cemgil, A. Taylan
    Godsill, Simon
    2008 3RD INTERNATIONAL SYMPOSIUM ON WIRELESS PERVASIVE COMPUTING, VOLS 1-2, 2008, : 278 - 282
  • [27] Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes
    Bekki, Kenji
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 467 (02) : 1857 - 1873
  • [28] Bayesian Inference of Kinematics and Mass Segregation of Open Cluster
    Shao, Z.
    Xie, X.
    Chen, L.
    Zhong, J.
    Hou, J.
    Lin, C-C.
    FORMATION, EVOLUTION, AND SURVIVAL OF MASSIVE STAR CLUSTERS, 2017, 12 (S316): : 265 - 266
  • [29] Observational properties of extragalactic globular cluster systems
    Forbes, DA
    NEW HORIZONS IN GLOBULAR CLUSTER ASTRONOMY, 2003, 296 : 517 - 524
  • [30] Correlations of globular cluster properties:: Their interpretations and uses
    Djorgovski, SG
    Côté, P
    Meylan, G
    Castro, S
    Federici, L
    Parmeggiani, G
    Cacciari, C
    Pecci, FF
    Rich, RM
    Jou, T
    NEW HORIZONS IN GLOBULAR CLUSTER ASTRONOMY, 2003, 296 : 479 - 487