Hierarchical Bayesian inference of globular cluster properties

被引:2
|
作者
Wen, Robin Y. [1 ,2 ]
Speagle, Joshua S. [1 ,3 ,4 ,5 ]
Webb, Jeremy J. [1 ]
Eadie, Gwendolyn M. [1 ,3 ]
机构
[1] Univ Toronto, David A Dunlap Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[2] CALTECH, 1200E Calif Blvd, Pasadena, CA 91125 USA
[3] Univ Toronto, Dept Stat Sci, 9th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
[4] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada
[5] Univ Toronto, Data Sci Inst, 17th Floor,Ontario Power Bldg,700 Univ Ave, Toronto, ON M5G 1Z5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
globular clusters: general; methods: data analysis; methods: statistical; STAR-CLUSTERS; MILKY-WAY; GAIA; PROFILES; MODELS; KINEMATICS; SYSTEM; PARAMETERS; ANISOTROPY; CATALOG;
D O I
10.1093/mnras/stad3536
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a hierarchical Bayesian inference approach to estimating the structural properties and the phase-space centre of a globular cluster (GC) given the spatial and kinematic information of its stars based on lowered isothermal cluster models. As a first step towards more realistic modelling of GCs, we built a differentiable, accurate emulator of the lowered isothermal distribution function using interpolation. The reliable gradient information provided by the emulator allows the use of Hamiltonian Monte Carlo methods to sample large Bayesian models with hundreds of parameters, thereby enabling inference on hierarchical models. We explore the use of hierarchical Bayesian modelling to address several issues encountered in observations of GC including an unknown GC centre, incomplete data, and measurement errors. Our approach not only avoids the common technique of radial binning but also incorporates the aforementioned uncertainties in a robust and statistically consistent way. Through demonstrating the reliability of our hierarchical Bayesian model on simulations, our work lays out the foundation for more realistic and complex modelling of real GC data.
引用
收藏
页码:4193 / 4208
页数:16
相关论文
共 50 条
  • [1] Bayesian Inference of Globular Cluster Properties Using Distribution Functions
    Eadie, Gwendolyn M.
    Webb, Jeremy J.
    Rosenthal, Jeffrey S.
    ASTROPHYSICAL JOURNAL, 2022, 926 (02):
  • [2] Estimating the thermal properties of a calorimeter using hierarchical Bayesian inference with MCMC
    Emery, A. F.
    Bardot, D.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 12: NEW DEVELOPMENTS IN SIMULATION METHODS AND SOFTWARE FOR ENGINEERING APPLICATIONS, 2008, : 1 - 10
  • [3] Bayesian Network Structure Inference with an Hierarchical Bayesian Model
    Werhli, Adriano Velasque
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2010, 2010, 6404 : 92 - 101
  • [4] Hierarchical Bayesian inference in the visual cortex
    Lee, TS
    Mumford, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (07) : 1434 - 1448
  • [5] Hierarchical Bayesian inference of brain activity
    Sato, Masa-Aki
    Yoshioka, Taku
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 576 - 585
  • [6] GENERAL BAYESIAN MODEL FOR HIERARCHICAL INFERENCE
    KELLY, CW
    BARCLAY, S
    ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE, 1973, 10 (03): : 388 - 403
  • [7] Hierarchical Clustering through Bayesian Inference
    Spytkowski, Michal
    Kwasnicka, Halina
    COMPUTATIONAL COLLECTIVE INTELLIGENCE - TECHNOLOGIES AND APPLICATIONS, PT I, 2012, 7653 : 515 - 524
  • [8] The formation and hierarchical assembly of globular cluster populations
    El-Badry, Kareem
    Quataert, Eliot
    Weisz, Daniel R.
    Choksi, Nick
    Boylan-Kolchin, Michael
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (04) : 4528 - 4552
  • [9] On the formation of globular cluster systems in a hierarchical Universe
    Beasley, MA
    Baugh, CM
    Forbes, DA
    Sharples, RM
    Frenk, CS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 333 (02) : 383 - 399
  • [10] The HERBAL Model: A Hierarchical Errors-in-variables Bayesian Lognormal Hurdle Model for Galactic Globular Cluster Populations
    Berek, Samantha C.
    Eadie, Gwendolyn M.
    Speagle, Joshua S.
    Harris, William E.
    ASTROPHYSICAL JOURNAL, 2023, 955 (01):