TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads

被引:1
|
作者
Ouyang, Jinhui [1 ]
Yu, Mingxia [2 ]
Yu, Weiren [3 ]
Qin, Zheng [2 ]
Regan, Amelia C. [4 ]
Wu, Di [1 ]
机构
[1] Hunan Univ, Key Lab Embedded & Network Comp Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
[4] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Roads; Feature extraction; Data mining; Convolutional neural networks; Convolution; Transformers; Predictive models; Traffic prediction; spatial-temporal transformer; multi-head attention mechanism; graph neural networks; DEEP; FLOW; NETWORK; TIME;
D O I
10.1109/TITS.2023.3334558
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The accurate prediction of traffic conditions, including speed, flow, and travel time, poses a critical challenge in urbanization that significantly impacts car owners and road administrators. However, in certain scenarios with restricted road data availability (e.g. lack of traffic light status and signal control strategies, cooperation between road administrators and third parties, etc.), it is imperative to make effective use of basic road information (e.g. historical traffic data and road connectivity) to improve both prediction accuracy and scalability on various arterial road networks against state-of-art deep learning models. In this paper, we propose a spatial-temporal learning framework TPGraph for an accurate prediction of arterial roads' traffic data by effectively utilizing upstream and downstream road information. TPGraph is composed of three major parts: 1) A multi-scale temporal feature fusion module that utilizes a multi-head attention mechanism to integrate recently-periodic features, daily-periodic features, and weekly-periodic features; 2) A multi-graph convolution module that employs graph fusion and graph convolution networks to capture richer spatial semantics, and 3) A dynamic spatial-temporal prediction module that leverages a spatial-temporal transformer for single or multiple traffic-state predictions. Our proposed framework, TPGraph, leverages just multi-scale historical traffic conditions and readily accessible spatial factors as input to generate accurate predictions of future traffic conditions. We mainly evaluate the performance of our approach through multi-step prediction experiments conducted at hourly intervals, forecasting travel time or travel speed for each road at 15 mins, 30 mins, and 1 hour. Furthermore, we conduct extensive experiments on real-world arterial road datasets to demonstrate the superior predictive performance of TPGraph compared to existing methods.
引用
收藏
页码:3911 / 3926
页数:16
相关论文
共 50 条
  • [41] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [42] STGSA: A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction
    Zebing Wei
    Hongxia Zhao
    Zhishuai Li
    Xiaojie Bu
    Yuanyuan Chen
    Xiqiao Zhang
    Yisheng Lv
    Fei-Yue Wang
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (01) : 226 - 238
  • [43] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [44] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108
  • [45] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [46] Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction
    Ge, Liang
    Li, Siyu
    Wang, Yaqian
    Chang, Feng
    Wu, Kunyan
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [47] A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention
    Tang, Cong
    Sun, Jingru
    Sun, Yichuang
    Peng, Mu
    Gan, Nianfei
    IEEE ACCESS, 2020, 8 : 153731 - 153741
  • [48] An Urban Traffic Knowledge Graph-Driven Spatial-Temporal Graph Convolutional Network for Traffic Flow Prediction
    Yang, Chengbiao
    Qi, Guilin
    PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS, IJCKG 2022, 2022, : 110 - 114
  • [49] Dynamic multiple-graph spatial-temporal synchronous aggregation framework for traffic prediction in intelligent transportation systems
    Yu, Xian
    Bao, Yinxin
    Shi, Quan
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [50] STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph
    He, Silu
    Luo, Qinyao
    Du, Ronghua
    Zhao, Ling
    He, Guangjun
    Fu, Han
    Li, Haifeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 623