TPGraph: A Spatial-Temporal Graph Learning Framework for Accurate Traffic Prediction on Arterial Roads

被引:1
|
作者
Ouyang, Jinhui [1 ]
Yu, Mingxia [2 ]
Yu, Weiren [3 ]
Qin, Zheng [2 ]
Regan, Amelia C. [4 ]
Wu, Di [1 ]
机构
[1] Hunan Univ, Key Lab Embedded & Network Comp Hunan Prov, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, England
[4] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Roads; Feature extraction; Data mining; Convolutional neural networks; Convolution; Transformers; Predictive models; Traffic prediction; spatial-temporal transformer; multi-head attention mechanism; graph neural networks; DEEP; FLOW; NETWORK; TIME;
D O I
10.1109/TITS.2023.3334558
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The accurate prediction of traffic conditions, including speed, flow, and travel time, poses a critical challenge in urbanization that significantly impacts car owners and road administrators. However, in certain scenarios with restricted road data availability (e.g. lack of traffic light status and signal control strategies, cooperation between road administrators and third parties, etc.), it is imperative to make effective use of basic road information (e.g. historical traffic data and road connectivity) to improve both prediction accuracy and scalability on various arterial road networks against state-of-art deep learning models. In this paper, we propose a spatial-temporal learning framework TPGraph for an accurate prediction of arterial roads' traffic data by effectively utilizing upstream and downstream road information. TPGraph is composed of three major parts: 1) A multi-scale temporal feature fusion module that utilizes a multi-head attention mechanism to integrate recently-periodic features, daily-periodic features, and weekly-periodic features; 2) A multi-graph convolution module that employs graph fusion and graph convolution networks to capture richer spatial semantics, and 3) A dynamic spatial-temporal prediction module that leverages a spatial-temporal transformer for single or multiple traffic-state predictions. Our proposed framework, TPGraph, leverages just multi-scale historical traffic conditions and readily accessible spatial factors as input to generate accurate predictions of future traffic conditions. We mainly evaluate the performance of our approach through multi-step prediction experiments conducted at hourly intervals, forecasting travel time or travel speed for each road at 15 mins, 30 mins, and 1 hour. Furthermore, we conduct extensive experiments on real-world arterial road datasets to demonstrate the superior predictive performance of TPGraph compared to existing methods.
引用
收藏
页码:3911 / 3926
页数:16
相关论文
共 50 条
  • [21] DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13116 - 13124
  • [22] Dynamic Spatial-Temporal Heterogeneous Graph Convolutional Network for Traffic Prediction
    Jin, Hengqing
    Pu, Lipeng
    Lecture Notes in Electrical Engineering, 2024, 1253 LNEE : 60 - 68
  • [23] Context based spatial-temporal graph convolutional networks for traffic prediction
    Jia, Chaolong
    Zhang, Wenjing
    He, Yumei
    Wang, Rong
    Li, Jinchao
    Xiao, Yunpeng
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [24] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304
  • [25] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [26] Interpretable Traffic Accident Prediction: Attention Spatial-Temporal Multi-Graph Traffic Stream Learning Approach
    Li, Chaojie
    Zhang, Borui
    Wang, Zeyu
    Yang, Yin
    Zhou, Xiaojun
    Pan, Shirui
    Yu, Xinghuo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15574 - 15586
  • [27] An Adaptive Federated Relevance Framework for Spatial-Temporal Graph Learning
    Zhang T.
    Liu Y.
    Shen Z.
    Xu R.
    Chen X.
    Huang X.
    Zheng X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (05): : 2227 - 2240
  • [28] Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction
    Liu, Lingbo
    Zhen, Jiajie
    Li, Guanbin
    Zhan, Geng
    He, Zhaocheng
    Du, Bowen
    Lin, Liang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (11) : 7169 - 7183
  • [29] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [30] Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction
    Chen, Yibi
    Qin, Yunchuan
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (10) : 12653 - 12663