Entity-Based Relevance Feedback for Document Retrieval

被引:1
|
作者
Sheetrit, Eilon [2 ]
Raiber, Fiana [1 ]
Kurland, Oren [2 ]
机构
[1] Yahoo Res, New York, NY 12345 USA
[2] Technion, Haifa, Israel
基金
以色列科学基金会;
关键词
entity relevance feedback; query expansion; document retrieval; QUERY; SUPPORT;
D O I
10.1145/3578337.3605128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a long history of work on using relevance feedback for ad hoc document retrieval. The main types of relevance feedback studied thus far are for documents, passages and terms. We explore the merits of using relevance feedback provided for entities in an entity repository. We devise retrieval methods that can utilize relevance feedback provided for tokens whether entities or terms. Empirical evaluation shows that using entity relevance feedback falls short with respect to utilizing term feedback on average, but is much more effective for difficult queries. Furthermore, integrating term and entity relevance feedback is of clear merit; e.g., for augmenting minimal document feedback. We also contrast approaches to presenting entities and terms for soliciting relevance feedback.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [31] The KNOWLEDGESTORE: an Entity-Based Storage System
    Cattoni, R.
    Corcoglioniti, F.
    Girardi, C.
    Magnini, B.
    Serafini, L.
    Zanoli, R.
    LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2012, : 3639 - 3646
  • [32] Relevance Feedback in Image Retrieval Based on RSVM
    Qi, Ya-Li
    2009 WASE INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING, ICIE 2009, VOL I, 2009, : 228 - 231
  • [33] Relevance feedback for semantics based image retrieval
    Yoon, JH
    Jayant, N
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 42 - 45
  • [34] Image retrieval based on indexing and relevance feedback
    Saha, Sanjoy K.
    Das, Amit K.
    Chanda, Bhabatosh
    PATTERN RECOGNITION LETTERS, 2007, 28 (03) : 357 - 366
  • [35] Document image retrieval based on 2D density distributions of terms with pseudo relevance feedback
    Kise, K
    Wuotang, Y
    Matsumoto, K
    SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 488 - 492
  • [36] Improving Similar Document Retrieval Using a Recursive Pseudo Relevance Feedback Strategy
    Williams, Kyle
    Giles, C. Lee
    2016 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL), 2016, : 275 - 276
  • [37] An end-to-end pseudo relevance feedback framework for neural document retrieval
    Wang, Le
    Luo, Ze
    Li, Canjia
    He, Ben
    Sun, Le
    Yu, Hao
    Sun, Yingfei
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (02)
  • [38] An one class classification approach to non-relevance feedback document retrieval
    Onoda, T
    Murata, H
    Yamada, S
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 1216 - 1225
  • [39] Entity-Based Knowledge Conflicts in Question Answering
    Longpre, Shayne
    Perisetla, Kartik
    Chen, Anthony
    Ramesh, Nikhil
    DuBois, Chris
    Singh, Sameer
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 7052 - 7063
  • [40] Towards an Entity-based Scientific Metadata Schema
    Xu, Hao
    APPLIED MATERIALS AND TECHNOLOGIES FOR MODERN MANUFACTURING, PTS 1-4, 2013, 423-426 : 2751 - 2754