Entity-Based Relevance Feedback for Document Retrieval

被引:1
|
作者
Sheetrit, Eilon [2 ]
Raiber, Fiana [1 ]
Kurland, Oren [2 ]
机构
[1] Yahoo Res, New York, NY 12345 USA
[2] Technion, Haifa, Israel
基金
以色列科学基金会;
关键词
entity relevance feedback; query expansion; document retrieval; QUERY; SUPPORT;
D O I
10.1145/3578337.3605128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a long history of work on using relevance feedback for ad hoc document retrieval. The main types of relevance feedback studied thus far are for documents, passages and terms. We explore the merits of using relevance feedback provided for entities in an entity repository. We devise retrieval methods that can utilize relevance feedback provided for tokens whether entities or terms. Empirical evaluation shows that using entity relevance feedback falls short with respect to utilizing term feedback on average, but is much more effective for difficult queries. Furthermore, integrating term and entity relevance feedback is of clear merit; e.g., for augmenting minimal document feedback. We also contrast approaches to presenting entities and terms for soliciting relevance feedback.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [21] Lexical paraphrasing and pseudo relevance feedback for biomedical document retrieval
    Wasim, Muhammad
    Asim, Muhammad Nabeel
    Ghani, Muhammad Usman
    Rehman, Zahoor Ur
    Rho, Seungmin
    Mehmood, Irfan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) : 29681 - 29712
  • [22] A simulation model of document information retrieval system with relevance feedback
    Pathak, P
    ASSOCIATION FOR INFORMATION SYSTEMS PROCEEDINGS OF THE AMERICAS CONFERENCE ON INFORMATION SYSTEMS, 1998, : 194 - 196
  • [23] Lexical paraphrasing and pseudo relevance feedback for biomedical document retrieval
    Muhammad Wasim
    Muhammad Nabeel Asim
    Muhammad Usman Ghani
    Zahoor Ur Rehman
    Seungmin Rho
    Irfan Mehmood
    Multimedia Tools and Applications, 2019, 78 : 29681 - 29712
  • [24] Non-relevance feedback document retrieval based on One Class SVM and SVDD
    Onoda, Takashi
    Murata, Hiroshi
    Yamada, Seiji
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1212 - +
  • [25] One class classification methods based non-relevance feedback document retrieval
    Onoda, Takashi
    Murata, Hiroshi
    Yamada, Seiji
    2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WORKSHOPS PROCEEDINGS, 2006, : 393 - +
  • [26] Query expansion for document retrieval based on fuzzy rules and user relevance feedback techniques
    Lin, Hsi-Ching
    Wang, Li-Hui
    Chen, Shyi-Ming
    EXPERT SYSTEMS WITH APPLICATIONS, 2006, 31 (02) : 397 - 405
  • [27] Blind relevance feedback and named entity based query expansion for geographic retrieval at GeoCLEF 2006
    Bischoff, Kerstin
    Mandl, Thomas
    Womser-Hacker, Christa
    EVALUATION OF MULTILINGUAL AND MULTI-MODAL INFORMATION RETRIEVAL, 2007, 4730 : 946 - +
  • [28] XKnowSearch! Exploiting Knowledge Bases for Entity-based Cross-lingual Information Retrieval
    Zhang, Lei
    Faerber, Michael
    Rettinger, Achim
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 2425 - 2428
  • [29] One class support vector machine based non-relevance feedback document retrieval
    Onoda, T
    Murata, H
    Yamada, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 552 - 557
  • [30] Active learning with support vector machines in the relevance feedback document retrieval
    Onoda, Takashi
    Murata, Hiroshi
    Yamada, Seiji
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 2004 - +