Entity-Based Relevance Feedback for Document Retrieval

被引:1
|
作者
Sheetrit, Eilon [2 ]
Raiber, Fiana [1 ]
Kurland, Oren [2 ]
机构
[1] Yahoo Res, New York, NY 12345 USA
[2] Technion, Haifa, Israel
基金
以色列科学基金会;
关键词
entity relevance feedback; query expansion; document retrieval; QUERY; SUPPORT;
D O I
10.1145/3578337.3605128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is a long history of work on using relevance feedback for ad hoc document retrieval. The main types of relevance feedback studied thus far are for documents, passages and terms. We explore the merits of using relevance feedback provided for entities in an entity repository. We devise retrieval methods that can utilize relevance feedback provided for tokens whether entities or terms. Empirical evaluation shows that using entity relevance feedback falls short with respect to utilizing term feedback on average, but is much more effective for difficult queries. Furthermore, integrating term and entity relevance feedback is of clear merit; e.g., for augmenting minimal document feedback. We also contrast approaches to presenting entities and terms for soliciting relevance feedback.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [1] Document Retrieval Using Entity-Based Language Models
    Raviv, Hadas
    Kurland, Oren
    Carmel, David
    SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2016, : 65 - 74
  • [2] Entity-Based Retrieval
    Raviv, Hadas
    SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 1277 - 1277
  • [3] A Purely Entity-Based Semantic Search Approach for Document Retrieval
    Sidi, Mohamed Lemine
    Gunal, Serkan
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [4] TweetSpector: Entity-based retrieval of Tweets
    Yerva, Surender Reddy
    Miklos, Zoltan
    Grosan, Flavia
    Tandrau, Alexandru
    Aberer, Karl
    SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 1016 - 1016
  • [5] Fuzzy Named Entity-Based Document Clustering
    Cao, Tru H.
    Do, Hai T.
    Hong, Dung T.
    Quan, Tho T.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 2030 - 2036
  • [6] A Document Retrieval Strategy Based On Non-Relevance Feedback
    Wang, Xiaogang
    Li, Yue
    2009 SECOND INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, FITME 2009, 2009, : 214 - 217
  • [7] Relevance feedback with active learning for document retrieval
    Onoda, T
    Murata, H
    Yamada, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1757 - 1762
  • [8] Non-Relevance Feedback for Document Retrieval
    Wang, Xiaogang
    Li, Yue
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 2, 2009, : 361 - 364
  • [9] Non-relevance feedback document retrieval
    Onoda, T
    Murata, H
    Yamada, S
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 456 - 461
  • [10] Document-level Entity-based Extraction as Template Generation
    Huang, Kung-Hsiang
    Tang, Sam
    Peng, Nanyun
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5257 - 5269