Droplet energy harvesting system based on MXene/SiO2 modified triboelectric nanogenerators

被引:21
|
作者
Wang, Mingxing [1 ,2 ,3 ]
Wang, Xiutong [1 ,2 ,3 ]
Xu, Hui [1 ]
Zhou, Hui [1 ]
Sun, Yanan [1 ]
Yi, Peijia [1 ]
Yu, Teng [1 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
[2] Laoshan Lab, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
TENG; Cathodic protection; PDMS; Modification; Droplet energy; POLYDIMETHYLSILOXANE; PROTECTION; ELECTRET; PDMS; SIO2; FILM;
D O I
10.1016/j.cej.2023.146832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Raindrops are an abundant micromechanical renewable energy source in nature, and raindrop energy harvesting has always been a research hotspot. Traditional hydropower generation is not suitable for low-frequency energy harvesting, and it is difficult to realize distributed energy harvesting. The development of triboelectric nanogenerator (TENG) is a promising strategy for converting raindrop energy in the environment into electrical energy. Polydimethylsiloxane (PDMS) composite has received much attention due to its excellent chemical stability and insulating properties for TENG. However, the deficiency of the low output performance and insufficient hydrophobicity of PDMS limits the application of PDMS in droplet energy capture. Modification of PDMS can improve the droplet energy collection capability of the liquid-solid contact triboelectric (LS-TENG). In this work, a new approach to modifying polydimethylsiloxane (PDMS) as a hydrophobic negative triboelectric material using a high dielectric constant MXene and a hydrophobic nano-SiO2 was reported. The as-prepared composites ' permittivity and triboelectric performance were remarkably promoted as compared to composites without interfacial modification. In addition, the use of composites for TENG assembly improved the open-circuit voltage and short-circuit current by a factor of 47.5 and 25.21, respectively, compared to pure PDMS. Application of the composite to the assembled TENG was employed as energy harvester to light up LEDs and charge a capacitor. In addition, a cathodic protection system was designed to demonstrate its potential application in the field of electrochemistry. This provides guidance for the practical implementation of TENGs in the field of electrochemical cathodic protection.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Silk Fibroin-Based Triboelectric Nanogenerators for Energy Harvesting and Biomedical Applications
    Gan, Ni
    Wei, Meng
    Zhou, Qian
    Dong, Kaiyi
    Gao, Bingbing
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 8407 - 8423
  • [42] Chemically modified MXene nanoflakes for enhancing the output performance of triboelectric nanogenerators
    Cao, Viet Anh
    Kim, Minje
    Lee, Sol
    Van, Phuoc Cao
    Jeong, Jong-Ryul
    Park, Pangun
    Nah, Junghyo
    NANO ENERGY, 2023, 107
  • [43] The future of energy harvesting: A brief review of MXenes-based triboelectric nanogenerators
    Mohan, Raja
    Ali, Fathilah
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (10) : 3193 - 3209
  • [44] Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications
    Qin, Ying
    Zhang, Wanglin
    Liu, Yanhua
    Zhao, Jiamin
    Yuan, Jinxia
    Chi, Mingchao
    Meng, Xiangjiang
    Du, Guoli
    Cai, Chenchen
    Wang, Shuangfei
    Nie, Shuangxi
    NANO ENERGY, 2023, 106
  • [45] MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications
    Pabba, Durga Prasad
    Satthiyaraju, Mani
    Ramasdoss, Ananthakumar
    Sakthivel, Pandurengan
    Chidhambaram, Natarajan
    Dhanabalan, Shanmugasundar
    Abarzua, Carolina Venegas
    Morel, Mauricio J.
    Udayabhaskar, Rednam
    Mangalaraja, Ramalinga Viswanathan
    Aepuru, Radhamanohar
    Kamaraj, Sathish-Kumar
    Murugesan, Praveen Kumar
    Thirumurugan, Arun
    MICROMACHINES, 2023, 14 (06)
  • [46] Triboelectric nanogenerators for blue energy harvesting in simulated wave conditions
    Demircioglu, Onur
    Cicek, Melih Ogeday
    Doganay, Doga
    Gazaloglu, Gunay
    Baykal, Cuneyt
    Cinar, Simge
    Unalan, Husnu Emrah
    NANO ENERGY, 2023, 107
  • [47] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15 (08) : 388 - 411
  • [48] Flexible, humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications
    Sardana, Sagar
    Sharma, Vaishali
    Beepat, Kevin Gurbani
    Sharma, Davinder Pal
    Chawla, Amit Kumar
    Mahajan, Aman
    NANOSCALE, 2023, 15 (47) : 19369 - 19380
  • [49] Triboelectric nanogenerators: Harvesting mechanical energy using polymer films
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [50] Circuit Modeling Approach for Analyzing Triboelectric Nanogenerators for Energy Harvesting
    Yoon, Bo-Kyung
    Baik, Jeong Min
    Kim, Katherine A.
    2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), 2018, : 3063 - 3068