Droplet energy harvesting system based on MXene/SiO2 modified triboelectric nanogenerators

被引:21
|
作者
Wang, Mingxing [1 ,2 ,3 ]
Wang, Xiutong [1 ,2 ,3 ]
Xu, Hui [1 ]
Zhou, Hui [1 ]
Sun, Yanan [1 ]
Yi, Peijia [1 ]
Yu, Teng [1 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
[2] Laoshan Lab, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
TENG; Cathodic protection; PDMS; Modification; Droplet energy; POLYDIMETHYLSILOXANE; PROTECTION; ELECTRET; PDMS; SIO2; FILM;
D O I
10.1016/j.cej.2023.146832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Raindrops are an abundant micromechanical renewable energy source in nature, and raindrop energy harvesting has always been a research hotspot. Traditional hydropower generation is not suitable for low-frequency energy harvesting, and it is difficult to realize distributed energy harvesting. The development of triboelectric nanogenerator (TENG) is a promising strategy for converting raindrop energy in the environment into electrical energy. Polydimethylsiloxane (PDMS) composite has received much attention due to its excellent chemical stability and insulating properties for TENG. However, the deficiency of the low output performance and insufficient hydrophobicity of PDMS limits the application of PDMS in droplet energy capture. Modification of PDMS can improve the droplet energy collection capability of the liquid-solid contact triboelectric (LS-TENG). In this work, a new approach to modifying polydimethylsiloxane (PDMS) as a hydrophobic negative triboelectric material using a high dielectric constant MXene and a hydrophobic nano-SiO2 was reported. The as-prepared composites ' permittivity and triboelectric performance were remarkably promoted as compared to composites without interfacial modification. In addition, the use of composites for TENG assembly improved the open-circuit voltage and short-circuit current by a factor of 47.5 and 25.21, respectively, compared to pure PDMS. Application of the composite to the assembled TENG was employed as energy harvester to light up LEDs and charge a capacitor. In addition, a cathodic protection system was designed to demonstrate its potential application in the field of electrochemistry. This provides guidance for the practical implementation of TENGs in the field of electrochemical cathodic protection.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Natural textile based triboelectric nanogenerators for efficient energy harvesting applications
    Sangkhun, Weradesh
    Wanwong, Sompit
    NANOSCALE, 2021, 13 (04) : 2420 - 2428
  • [22] Triboelectric Nanogenerators Based on Immobilized Living Microalgae for Biomechanical Energy Harvesting
    Sugato Hajra
    Pichaya In-na
    Chalampol Janpum
    Swati Panda
    Hoe Joon Kim
    Electronic Materials Letters, 2023, 19 : 367 - 373
  • [23] Graphene-based triboelectric nanogenerators for energy-harvesting applications
    Chakraborthy, Aniket
    Nuthalapati, Suresh
    Nag, Anindya
    Altinsoy, Mehmet E.
    He, Shan
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 380
  • [24] Enhanced of ZIF-8 and MXene decorated triboelectric nanogenerator for droplet energy harvesting
    Wang, Mingxing
    Wang, Xiutong
    Nan, Youbo
    Zhou, Hui
    Xu, Hui
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [25] Recent Progress in Flow Energy Harvesting and Sensing Based on Triboelectric Nanogenerators
    Wu, Mengwei
    Zhu, Chuanqing
    Si, Jicang
    Wang, Hao
    Xu, Minyi
    Mi, Jianchun
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (19)
  • [26] All-Fiber-Based Superhydrophobic Wearable Self-Powered Triboelectric Nanogenerators for Biomechanical and Droplet Energy Harvesting
    Zhang, Ruizhe
    Shen, Lei
    Li, Jiehui
    Xue, Yuyu
    Liu, Hui
    He, Jinmei
    Qu, Mengnan
    ACS APPLIED NANO MATERIALS, 2023, 6 (24) : 23279 - 23291
  • [27] Assessment of Triboelectric Nanogenerators for Electric Field Energy Harvesting
    Menendez, Oswaldo
    Villacres, Juan
    Prado, Alvaro
    Vasconez, Juan P.
    Auat-Cheein, Fernando
    SENSORS, 2024, 24 (08)
  • [28] Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy
    Cui, Xiaojing
    Yu, Cecilia
    Wang, Zhaosu
    Wan, Dong
    Zhang, Hulin
    MICROMACHINES, 2022, 13 (08)
  • [29] Triboelectric nanogenerators for marine energy harvesting and sensing applications
    Radhakrishnan, Sithara
    Joseph, Sherin
    Jelmy, E. J.
    Saji, K. J.
    Sanathanakrishnan, T.
    John, Honey
    RESULTS IN ENGINEERING, 2022, 15
  • [30] Triboelectric Nanogenerators (TENG) for Future Energy Harvesting Devices
    Vaid, Rakesh
    Sambyal, Ashish Singh
    2024 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE, LAEDC, 2024,