Grain yield prediction model based on the analysis of climate and irrigated area conditions in the wheat grain-filling period

被引:1
|
作者
Gong, Qizhou [1 ]
Huang, Hongliang [2 ]
Zhang, Bingjiang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100029, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
irrigated area; precipitation; weather; wheat production; XGBoost; temps; precipitations; superficie irriguee; production de ble; RICE PRODUCTION; PLATEAU; TRENDS;
D O I
10.1002/ird.2777
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The food problem is a major issue of common concern around the world, and the forecasting of wheat output can help to promote the solution of this problem. This paper analyses the relationship between wheat yield and weather, precipitation and irrigated area; proposes a Bayesian optimized machine model of the XGBoost regression algorithm; and applies it to forecast wheat yield in Uttar Pradesh, India. Second, the stability and robustness of the XGBoost model using the top five parameter combinations of the optimization score were evaluated by cross-validation, and the best model was used to predict wheat yield in Uttar Pradesh, India. Finally, the model is compared with other prediction models, and the tenfold cross-validation experimental results show the effectiveness of the model. Ultimately, by learning from the available data and using the 2022 wheat irrigation data to forecast wheat yield per acre, we obtain a wheat production estimate of 17 930 817t in Uttar Pradesh in 2022, which is a decreasing trend from previous years' wheat output. The impact of extreme heat on total production is somewhat contained by the year-on-year increase in the irrigated area in Uttar Pradesh. Resume Le probleme de l'alimentation est une preoccupation majeure commune du monde, et la prevision de la production de ble peut contribuer a promouvoir la solution de ce probleme. Cet article analyse la relation entre le rendement du ble et les conditions meteorologiques, les precipitations et la zone irriguee, propose un modele bayesien de l'algorithme de regression XGBoost, et l'applique pour prevoir le rendement du ble dans l'Etat d'Uttar Pradesh, en Inde. Ensuite, la stabilite et la robustesse du modele XGBoost utilisant les cinq meilleures combinaisons de parametres du score d'optimisation ont ete evaluees par validation croisee, et le meilleur modele a ete utilise pour prevoir le rendement du ble dans l'Etat d'Uttar Pradesh, en Inde. Enfin, le modele est compare a d'autres modeles de prediction, et les resultats experimentaux de validation croisee par dix montrent l'efficacite du modele. En fin de compte, en apprenant a partir des donnees disponibles et en utilisant les donnees d'irrigation du ble de 2022 pour prevoir le rendement du ble par acre, nous obtenons une estimation de la production de ble de 17 930 817t en Uttar Pradesh en 2022, ce qui represente une tendance a la baisse par rapport a la production de ble des annees precedentes. L'impact de la chaleur extreme sur la production totale est quelque peu contenu par l'augmentation annuelle de la superficie irriguee en Uttar Pradesh.
引用
收藏
页码:422 / 438
页数:17
相关论文
共 50 条
  • [41] Analysis on grain filling characteristics of winter wheat under sprinkler irrigation and surface irrigation conditions
    Yao S.
    Kang Y.
    Lü G.
    Liu M.
    Yang W.
    Li D.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2011, 27 (07): : 13 - 17
  • [42] Influence of drought during the grain filling period to the yield and quality of winter wheat (T. aestivum L.)
    Croatian Chamber of Economy; Ministry of Agriculture, Forestry and Water Management of the Republic of Croatia; Ministry of Science, Education and Sports of the Republic of Croatia; TIM ZIP d.o.o. (Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Department of Cereal Processing Technology):
  • [43] Wheat yield and grain protein content: genetic analysis under nitrogen limited conditions
    Le Gouis, J.
    Throude, M.
    Pichon, J. P.
    Riviere, N.
    Torney, F.
    Salse, J.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S113 - S113
  • [44] Genetic dissection of the grain-filling rate and related traits through linkage analysis and genome-wide association study in bread wheat
    YU Hai-xia
    DUAN Xi-xian
    SUN Ai-qing
    SUN Xiao-xiao
    ZHANG Jing-juan
    SUN Hua-qing
    SUN Yan-yan
    NING Tang-yuan
    TIAN Ji-chun
    WANG Dong-xue
    LI Hao
    FAN Ke-xin
    WANG Ai-ping
    MA Wu-jun
    CHEN Jian-sheng
    Journal of Integrative Agriculture, 2022, 21 (10) : 2805 - 2817
  • [45] Genetic dissection of the grain-filling rate and related traits through linkage analysis and genome-wide association study in bread wheat
    Yu Hai-Xia
    Duan Xi-Xian
    Sun Ai-Qing
    Sun Xiao-Xiao
    Zhang Jing-Juan
    Sun Hua-Qing
    Sun Yan-Yan
    Ning Tang-Yuan
    Tian Ji-Chun
    Wang Dong-Xue
    Hao, Li
    Fan Ke-Xin
    Wang Ai-Ping
    Ma Wu-Jun
    Chen Jian-Sheng
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2022, 21 (10) : 2805 - 2817
  • [46] Grain area data and yield characteristics data in rapid yield prediction based on rice panicle imaging
    Zheng, Haonan
    Zhao, Sanqin
    Liu, Yutao
    DATA IN BRIEF, 2019, 27
  • [47] Sensitivity of yield and grain nitrogen concentration of wheat, lupin and pea to source reduction during grain filling. A comparative survey under high yielding conditions
    Sandana, Patricio A.
    Harcha, Claudia I.
    Calderini, Daniel F.
    FIELD CROPS RESEARCH, 2009, 114 (02) : 233 - 243
  • [48] Comprehensive evaluation of high temperature tolerance of six rice varieties during grain-filling period based on key starch physicochemical indexes
    Yao, Dongping
    Wu, Jun
    Luo, Qiuhong
    Shen, Hong
    Zhuang, Wen
    Xiao, Gui
    Li, Jianwu
    Li, Yingge
    Deng, Qiyun
    Lei, Dongyang
    Bai, Bin
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2021, 148
  • [49] A predictive model of wheat grain yield based on canopy reflectance indices and theoretical definition of yield potential
    João Paulo Pennacchi
    Nicolas Virlet
    João Paulo Rodrigues Alves Delfino Barbosa
    Martin A. J. Parry
    David Feuerhelm
    Malcolm Hawkesford
    Elizabete Carmo-Silva
    Theoretical and Experimental Plant Physiology, 2022, 34 : 537 - 550
  • [50] A predictive model of wheat grain yield based on canopy reflectance indices and theoretical definition of yield potential
    Pennacchi, Joao Paulo
    Virlet, Nicolas
    Alves Delfino Barbosa, Joao Paulo Rodrigues
    Parry, Martin A. J.
    Feuerhelm, David
    Hawkesford, Malcolm
    Carmo-Silva, Elizabete
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2022, 34 (04) : 537 - 550