Grain yield prediction model based on the analysis of climate and irrigated area conditions in the wheat grain-filling period

被引:1
|
作者
Gong, Qizhou [1 ]
Huang, Hongliang [2 ]
Zhang, Bingjiang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100029, Peoples R China
[2] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
irrigated area; precipitation; weather; wheat production; XGBoost; temps; precipitations; superficie irriguee; production de ble; RICE PRODUCTION; PLATEAU; TRENDS;
D O I
10.1002/ird.2777
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The food problem is a major issue of common concern around the world, and the forecasting of wheat output can help to promote the solution of this problem. This paper analyses the relationship between wheat yield and weather, precipitation and irrigated area; proposes a Bayesian optimized machine model of the XGBoost regression algorithm; and applies it to forecast wheat yield in Uttar Pradesh, India. Second, the stability and robustness of the XGBoost model using the top five parameter combinations of the optimization score were evaluated by cross-validation, and the best model was used to predict wheat yield in Uttar Pradesh, India. Finally, the model is compared with other prediction models, and the tenfold cross-validation experimental results show the effectiveness of the model. Ultimately, by learning from the available data and using the 2022 wheat irrigation data to forecast wheat yield per acre, we obtain a wheat production estimate of 17 930 817t in Uttar Pradesh in 2022, which is a decreasing trend from previous years' wheat output. The impact of extreme heat on total production is somewhat contained by the year-on-year increase in the irrigated area in Uttar Pradesh. Resume Le probleme de l'alimentation est une preoccupation majeure commune du monde, et la prevision de la production de ble peut contribuer a promouvoir la solution de ce probleme. Cet article analyse la relation entre le rendement du ble et les conditions meteorologiques, les precipitations et la zone irriguee, propose un modele bayesien de l'algorithme de regression XGBoost, et l'applique pour prevoir le rendement du ble dans l'Etat d'Uttar Pradesh, en Inde. Ensuite, la stabilite et la robustesse du modele XGBoost utilisant les cinq meilleures combinaisons de parametres du score d'optimisation ont ete evaluees par validation croisee, et le meilleur modele a ete utilise pour prevoir le rendement du ble dans l'Etat d'Uttar Pradesh, en Inde. Enfin, le modele est compare a d'autres modeles de prediction, et les resultats experimentaux de validation croisee par dix montrent l'efficacite du modele. En fin de compte, en apprenant a partir des donnees disponibles et en utilisant les donnees d'irrigation du ble de 2022 pour prevoir le rendement du ble par acre, nous obtenons une estimation de la production de ble de 17 930 817t en Uttar Pradesh en 2022, ce qui represente une tendance a la baisse par rapport a la production de ble des annees precedentes. L'impact de la chaleur extreme sur la production totale est quelque peu contenu par l'augmentation annuelle de la superficie irriguee en Uttar Pradesh.
引用
收藏
页码:422 / 438
页数:17
相关论文
共 50 条
  • [31] Research on the prediction model of grain yield based on the ARIMA method
    Fan Chao
    Cao Pei-ge
    Yang Tie-jun
    Fu Hong-liang
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, 2016, 43 : 454 - 458
  • [32] PLANT-GROWTH REGULATOR EFFECTS ON THE WHEAT EAR IN RELATION TO THE CONDITIONS DURING GRAIN FILLING PERIOD
    AUFHAMMER, W
    ZOSCHKE, A
    JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 1987, 158 (02): : 121 - 131
  • [33] Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments*
    S. Asseng
    A. F. van Herwaarden
    Plant and Soil, 2003, 256 : 217 - 229
  • [34] Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments
    Asseng, S
    van Herwaarden, AF
    PLANT AND SOIL, 2003, 256 (01) : 217 - 229
  • [35] EFFECT OF POLYSTIMULIN-K ON THE YIELD AND QUALITY OF WINTER-WHEAT GRAIN UNDER BOGHARIC AND IRRIGATED CONDITIONS
    GRIGORYUK, IA
    SHMATKO, IG
    KIRICHENKO, VP
    SHTILMAN, MI
    KORSHAK, VV
    FIZIOLOGIYA I BIOKHIMIYA KULTURNYKH RASTENII, 1990, 22 (01): : 59 - 65
  • [36] Effect of the length of the kernel filling period and the kernel filling rate on the grain yield of maize under different water supply conditions
    G. Hadi
    Cereal Research Communications, 2004, 32 (4) : 465 - 470
  • [37] Effect of the length of the kernel filling period and the kernel filling rate on the grain yield of maize under different water supply conditions
    Hadi, G
    CEREAL RESEARCH COMMUNICATIONS, 2004, 32 (04) : 465 - 470
  • [38] Grain Yield Prediction Based on the Metabolic Grey - Markov Integration Model
    Fan, Chao
    Chen, Fangfang
    Lin, Hao
    Yang, Litao
    Ndlovu, Ashley
    JOURNAL OF GREY SYSTEM, 2021, 33 (02): : 95 - 108
  • [39] Grain Yield Prediction Based on the Improved Unbiased Grey Markov Model
    Yuan, Wu
    Rui, Zhou
    Bao, Yu
    Xiang, Huang
    Bo, Li
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2025, 2025 (01)
  • [40] Influence of drought during the grain filling period to the yield and quality of winter wheat (T. aestivum L.)
    Baric, M.
    Keresa, S.
    Sarcevic, H.
    Jercic, I. Habus
    Horvat, D.
    Drezner, G.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONGRESS FLOUR - BREAD '05 AND 5TH CROATIAN CONGRESS OF CEREAL TECHNOLOGISTS, 2006, : 19 - +