Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning

被引:17
|
作者
Rodriguez-Temporal, David [1 ,2 ]
Herrera, Laura [3 ]
Alcaide, Fernando [4 ,5 ]
Domingo, Diego [6 ]
Hery-Arnaud, Genevieve [7 ,8 ]
van Ingen, Jakko [9 ]
Van den Bossche, An [10 ]
Ingebretsen, Andre [11 ]
Beauruelle, Clemence [7 ,8 ]
Terschlusen, Eva [9 ]
Boarbi, Samira [10 ]
Vila, Neus [4 ]
Arroyo, Manuel J. [12 ]
Mendez, Gema [12 ]
Munoz, Patricia [1 ,2 ,13 ,14 ]
Mancera, Luis [12 ]
Ruiz-Serrano, Maria Jesus [1 ]
Rodriguez-Sanchez, Belen [1 ,2 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Clin Microbiol & Infect Dis Dept, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Serv Bacteriol, Majadahonda, Spain
[4] Hosp Univ Bellvitge IDIBELL, Serv Microbiol, Lhospitalet De Llobregat, Spain
[5] Univ Barcelona, Dept Patol & Terapeut Expt, Lhospitalet De Llobregat, Spain
[6] Hosp Univ La Princesa, Serv Microbiol, Madrid, Spain
[7] Brest Univ Hosp, Unit Bacteriol, Brest, France
[8] Brest Univ, INSERM, UMR 1078, GGB,Microbiota Axis, Brest, France
[9] Radboud Univ Nijmegen, Dept Med Microbiol, Med Ctr, Nijmegen, Netherlands
[10] Sciensano, Div Human Bacterial Dis, Brussels, Belgium
[11] Oslo Univ Hosp, Oslo, Norway
[12] Clover Bioanalyt Software, Granada, Spain
[13] CIBER Enfermedades Resp CIBERES CB06 06 0058, Madrid, Spain
[14] Univ Complutense Madrid, Fac Med, Med Dept, Madrid, Spain
关键词
Mycobacterium abscessus; subspecies differentiation; MALDI-TOF; mass spectrometry; machine learning; Mycobacterium bolletii; Mycobacterium massiliense; LASER-DESORPTION IONIZATION; TIME;
D O I
10.1128/jcm.01110-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS. Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Rapid Identification of Commercial Frankincense Products by MALDI-TOF Mass Spectrometry
    Lai, Shang-Chih
    You, Ren-In
    Chen, Tz-Ting
    Chang, Yu
    Liu, Chao-Zong
    Chen, Hao-Ping
    Wu, Chunhung
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (05) : 895 - 905
  • [42] Closely Related Shrimp Species Identification by MALDI-ToF Mass Spectrometry
    Ortea, Ignacio
    Barros, Lorena
    Gallardo, Jose M.
    JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY, 2009, 18 (1-2) : 146 - 155
  • [43] Rapid Identification and Classification of Wine Microbes by MALDI-TOF Mass Spectrometry
    Ramsey, Michael S.
    Tao, Nannan
    Shi, Gongyi
    Ruiz-Moyano, Santiago
    Joseph, C. M. Lucy
    Boundy-Mills, Kyria
    Mills, David A.
    AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2011, 62 (03): : 387A - 387A
  • [44] Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification
    Carbonnelle, Etienne
    Grohs, Patrick
    Jacquier, Herve
    Day, Nesrine
    Tenza, Sylvie
    Dewailly, Alexandra
    Vissouarn, Odile
    Rottman, Martin
    Herrmann, Jean-Louis
    Podglajen, Isabelle
    Raskine, Laurent
    JOURNAL OF MICROBIOLOGICAL METHODS, 2012, 89 (02) : 133 - 136
  • [45] MALDI-TOF Mass Spectrometry Identification of the Marker of Vibrio cholerae Toxicity
    S. O. Chaika
    N. R. Telesmanich
    Yu. M. Lomov
    Molecular Genetics, Microbiology and Virology, 2018, 33 : 145 - 146
  • [46] The use of MALDI-TOF mass spectrometry for rapid identification of Mannheimia haemolytica
    Puchalski, Andrzej
    Urban-Chmiel, Renata
    Dec, Marta
    Stegierska, Diana
    Wernicki, Andrzej
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 2016, 78 (08): : 1339 - 1342
  • [47] Identification of ovine-associated staphylococci by MALDI-TOF mass spectrometry
    Tonamo, A.
    Komlosi, I
    Varga, L.
    Kacaniova, M.
    Peles, F.
    ACTA ALIMENTARIA, 2021, 50 (02) : 210 - 218
  • [48] Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry
    Stepanka Kuckova
    Radovan Hynek
    Milan Kodicek
    Analytical and Bioanalytical Chemistry, 2007, 388 : 201 - 206
  • [49] Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry
    Coltella, L.
    Mancinelli, L.
    Onori, M.
    Lucignano, B.
    Menichella, D.
    Sorge, R.
    Raponi, M.
    Mancini, R.
    Russo, C.
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2013, 32 (09) : 1183 - 1192
  • [50] Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms
    Gaudreau, A. M.
    Labrie, J.
    Goetz, C.
    Dufour, S.
    Jacques, M.
    JOURNAL OF MICROBIOLOGICAL METHODS, 2018, 145 : 79 - 81