Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning

被引:17
|
作者
Rodriguez-Temporal, David [1 ,2 ]
Herrera, Laura [3 ]
Alcaide, Fernando [4 ,5 ]
Domingo, Diego [6 ]
Hery-Arnaud, Genevieve [7 ,8 ]
van Ingen, Jakko [9 ]
Van den Bossche, An [10 ]
Ingebretsen, Andre [11 ]
Beauruelle, Clemence [7 ,8 ]
Terschlusen, Eva [9 ]
Boarbi, Samira [10 ]
Vila, Neus [4 ]
Arroyo, Manuel J. [12 ]
Mendez, Gema [12 ]
Munoz, Patricia [1 ,2 ,13 ,14 ]
Mancera, Luis [12 ]
Ruiz-Serrano, Maria Jesus [1 ]
Rodriguez-Sanchez, Belen [1 ,2 ]
机构
[1] Hosp Gen Univ Gregorio Maranon, Clin Microbiol & Infect Dis Dept, Madrid, Spain
[2] Inst Invest Sanitaria Gregorio Maranon, Madrid, Spain
[3] Inst Salud Carlos III, Ctr Nacl Microbiol, Serv Bacteriol, Majadahonda, Spain
[4] Hosp Univ Bellvitge IDIBELL, Serv Microbiol, Lhospitalet De Llobregat, Spain
[5] Univ Barcelona, Dept Patol & Terapeut Expt, Lhospitalet De Llobregat, Spain
[6] Hosp Univ La Princesa, Serv Microbiol, Madrid, Spain
[7] Brest Univ Hosp, Unit Bacteriol, Brest, France
[8] Brest Univ, INSERM, UMR 1078, GGB,Microbiota Axis, Brest, France
[9] Radboud Univ Nijmegen, Dept Med Microbiol, Med Ctr, Nijmegen, Netherlands
[10] Sciensano, Div Human Bacterial Dis, Brussels, Belgium
[11] Oslo Univ Hosp, Oslo, Norway
[12] Clover Bioanalyt Software, Granada, Spain
[13] CIBER Enfermedades Resp CIBERES CB06 06 0058, Madrid, Spain
[14] Univ Complutense Madrid, Fac Med, Med Dept, Madrid, Spain
关键词
Mycobacterium abscessus; subspecies differentiation; MALDI-TOF; mass spectrometry; machine learning; Mycobacterium bolletii; Mycobacterium massiliense; LASER-DESORPTION IONIZATION; TIME;
D O I
10.1128/jcm.01110-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS. Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MALDI-TOF mass spectrometry identification of mosquitoes collected in Vietnam
    Ly Na Huynh
    Adama Zan Diarra
    Hong Sang Nguyen
    Long Bien Tran
    Van Nguyen Do
    Tran Duc Anh Ly
    Van Hoang Ho
    Xuan Quang Nguyen
    Philippe Parola
    Parasites & Vectors, 15
  • [32] Mass spectrometry MALDI-TOF for identification of the Candida parapsilosis complex
    Iranzo, A.
    Garcia-Effron, G.
    Peman, J.
    Canton, E.
    Lopez-Hontangas, J. L.
    MYCOSES, 2011, 54 : 180 - 181
  • [33] Identification of clinical dermatophytes using MALDI-TOF mass spectrometry
    Agarwal, R.
    Singh, G.
    Mani, P.
    Pandey, M.
    Sachdev, J.
    Verma, K. K.
    Xess, I.
    MEDICAL MYCOLOGY, 2018, 56 : S97 - S97
  • [34] Direct identification of edible insects by MALDI-TOF mass spectrometry
    Ulrich, Sebastian
    Kuehn, Ulrike
    Biermaier, Barbara
    Piacenza, Nicolo
    Schwaiger, Karin
    Gottschalk, Christoph
    Gareis, Manfred
    FOOD CONTROL, 2017, 76 : 96 - 101
  • [35] Identification of dermatophyte and mold species by MALDI-TOF mass spectrometry
    Reich, M.
    Stark, M.
    Huesgen, G.
    Bosshard, P.
    Borgmann, S.
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2009, 299 : 13 - 13
  • [36] It's a MALDI but it's a goodie: MALDI-TOF mass spectrometry for microbial identification
    Randell, Paul
    THORAX, 2014, 69 (08) : 776 - 778
  • [37] Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry
    Tripkovic, T.
    Charvy, C.
    Alves, S.
    Lolic, A. D.
    Baosic, R. M.
    Nikolic-Mandic, S. D.
    Tabet, J. C.
    TALANTA, 2013, 113 : 49 - 61
  • [38] Identification of Mycobacterium abscessus to subspecies level with Bruker MALDI Biotyper
    Chew, Ka Lip
    Soh, Patsy
    Octavia, Sophie
    Teo, Jeanette
    PATHOLOGY, 2022, 54 (06) : 796 - 798
  • [39] MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory
    Ranque, Stephane
    Normand, Anne-Cecile
    Cassagne, Carole
    Murat, Jean-Benjamin
    Bourgeois, Nathalie
    Dalle, Frederic
    Gari-Toussaint, Martine
    Fourquet, Patrick
    Hendrickx, Marijke
    Piarroux, Renaud
    MYCOSES, 2014, 57 (03) : 135 - 140
  • [40] MALDI-TOF mass spectrometry as a potential tool for Trichomonas vaginalis identification
    Adriana Calderaro
    Maddalena Piergianni
    Sara Montecchini
    Mirko Buttrini
    Giovanna Piccolo
    Sabina Rossi
    Maria Cristina Arcangeletti
    Maria Cristina Medici
    Carlo Chezzi
    Flora De Conto
    BMC Infectious Diseases, 16