On Linear Convergence of ADMM for Decentralized Quantile Regression

被引:3
|
作者
Wang, Yue [1 ]
Lian, Heng [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
ADMM; linear convergence; proximal operator;
D O I
10.1109/TSP.2023.3325622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The alternating direction method of multipliers (ADMM) is a natural method of choice for distributed parameter learning. For smooth and strongly convex consensus optimization problems, it has been shown that ADMM and some of its variants enjoy linear convergence in the distributed setting, much like in the traditional non-distributed setting. The optimization problem associated with parameter estimation in quantile regression is neither smooth nor strongly convex (although is convex) and thus it seems can only have sublinear convergence at best. Although this insinuates slow convergence, we show that, if the local sample size is sufficiently large compared to parameter dimension and network size, distributed estimation in quantile regression actually exhibits linear convergence up to the statistical precision, the precise meaning of which will be explained in the text.
引用
收藏
页码:3945 / 3955
页数:11
相关论文
共 50 条
  • [21] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607
  • [22] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64
  • [23] Composite hierachical linear quantile regression
    Yan-liang Chen
    Mao-zai Tian
    Ke-ming Yu
    Jian-xin Pan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 49 - 64
  • [24] Adaptive local linear quantile regression
    Yu-nan Su
    Mao-zai Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27
  • [25] Composite Hierachical Linear Quantile Regression
    Yan-liang CHEN
    Mao-zai TIAN
    Ke-ming YU
    Jian-xin PAN
    Acta Mathematicae Applicatae Sinica, 2014, (01) : 49 - 64
  • [26] ESTIMATION IN FUNCTIONAL LINEAR QUANTILE REGRESSION
    Kato, Kengo
    ANNALS OF STATISTICS, 2012, 40 (06): : 3108 - 3136
  • [27] Adaptive local linear quantile regression
    Su, Yu-nan
    Tian, Mao-zai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 509 - 516
  • [28] Local linear additive quantile regression
    Yu, KM
    Lu, ZD
    SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) : 333 - 346
  • [29] ADMM for Sparse-Penalized Quantile Regression with Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2046 - 2050
  • [30] On the Global and Linear Convergence of the Generalized ADMM with Three Blocks
    Zhang, Linxia
    Ma, Ting
    Song, Enbin
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 397 - 402