On Linear Convergence of ADMM for Decentralized Quantile Regression

被引:3
|
作者
Wang, Yue [1 ]
Lian, Heng [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
ADMM; linear convergence; proximal operator;
D O I
10.1109/TSP.2023.3325622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The alternating direction method of multipliers (ADMM) is a natural method of choice for distributed parameter learning. For smooth and strongly convex consensus optimization problems, it has been shown that ADMM and some of its variants enjoy linear convergence in the distributed setting, much like in the traditional non-distributed setting. The optimization problem associated with parameter estimation in quantile regression is neither smooth nor strongly convex (although is convex) and thus it seems can only have sublinear convergence at best. Although this insinuates slow convergence, we show that, if the local sample size is sufficiently large compared to parameter dimension and network size, distributed estimation in quantile regression actually exhibits linear convergence up to the statistical precision, the precise meaning of which will be explained in the text.
引用
收藏
页码:3945 / 3955
页数:11
相关论文
共 50 条
  • [11] ON THE GLOBAL LINEAR CONVERGENCE OF THE ADMM WITH MULTIBLOCK VARIABLES
    Lin, Tianyi
    Ma, Shiqian
    Zhang, Shuzhong
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1478 - 1497
  • [12] Partial functional linear quantile regression
    TANG QingGuo
    CHENG LongSheng
    ScienceChina(Mathematics), 2014, 57 (12) : 2589 - 2608
  • [13] Partially linear censored quantile regression
    Neocleous, Tereza
    Portnoy, Stephen
    LIFETIME DATA ANALYSIS, 2009, 15 (03) : 357 - 378
  • [14] Composite Hierachical Linear Quantile Regression
    Yanliang CHEN
    Maozai TIAN
    Keming YU
    Jianxin PAN
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (01) : 49 - 64
  • [15] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    Science China Mathematics, 2014, 57 : 2589 - 2608
  • [16] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    Journal of the Korean Statistical Society, 2022, 51 : 589 - 607
  • [17] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [18] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [19] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    BERNOULLI, 2009, 15 (03) : 659 - 686
  • [20] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    Lifetime Data Analysis, 2009, 15 : 357 - 378