Long-Distance Coherent Propagation of High-Velocity Antiferromagnetic Spin Waves

被引:19
|
作者
Wang, Hanchen [1 ,2 ,3 ]
Yuan, Rundong [1 ]
Zhou, Yongjian [4 ]
Zhang, Yuelin [1 ]
Chen, Jilei [2 ,5 ]
Liu, Song [2 ,5 ]
Jia, Hao [2 ,5 ]
Yu, Dapeng [2 ,5 ]
Ansermet, Jean-Philippe [5 ,6 ]
Song, Cheng [4 ]
Yu, Haiming [1 ,2 ]
机构
[1] Beihang Univ, Fert Beijing Inst, Sch Integrated Circuit Sci & Engn, MIIT Key Lab Spintron, Beijing 100191, Peoples R China
[2] Int Quantum Acad, Shenzhen 518048, Peoples R China
[3] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland
[4] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
关键词
MAGNETIC DOMAIN-WALLS;
D O I
10.1103/PhysRevLett.130.096701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on coherent propagation of antiferromagnetic (AFM) spin waves over a long distance (similar to 10 mu m) at room temperature in a canted AFM alpha-Fe2O3 owing to the Dzyaloshinskii-Moriya interaction (DMI). Unprecedented high group velocities (up to 22.5 km/s) are characterized by microwave transmission using all-electrical spin wave spectroscopy. We derive analytically AFM spin-wave dispersion in the presence of the DMI which accounts for our experimental results. The AFM spin waves excited by nanometric coplanar waveguides have large wave vectors in the exchange regime and follow a quasilinear dispersion relation. Fitting of experimental data with our theoretical model yields an AFM exchange stiffness length of 1.7 angstrom. Our results provide key insights on AFM spin dynamics and demonstrate high-speed functionality for AFM magnonics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Coherent long-distance displacement of individual electron spins
    Flentje, H.
    Mortemousque, P. -A.
    Thalineau, R.
    Ludwig, A.
    Wieck, A. D.
    Bauerle, C.
    Meunier, T.
    NATURE COMMUNICATIONS, 2017, 8
  • [42] Long-distance coherent coupling in a quantum dot array
    Braakman F.R.
    Barthelemy P.
    Reichl C.
    Wegscheider W.
    Vandersypen L.M.K.
    Nature Nanotechnology, 2013, 8 (6) : 432 - 437
  • [43] Long-distance coherent coupling in a quantum dot array
    Braakman, F. R.
    Barthelemy, P.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    NATURE NANOTECHNOLOGY, 2013, 8 (06) : 432 - 437
  • [44] MULTIPLE BURSTS OF SIGNAL IN LONG-DISTANCE VERY-HIGH-FREQUENCY PROPAGATION
    ISTED, GA
    NATURE, 1953, 171 (4353) : 617 - 618
  • [45] Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks
    Goldberg, Mati
    De Pitta, Maurizio
    Volman, Vladislav
    Berry, Hugues
    Ben-Jacob, Eshel
    PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (08)
  • [46] An investigation of long-distance propagation of gravity waves under CAWSES India Phase II Programme
    Parihar, N.
    Taori, A.
    ANNALES GEOPHYSICAE, 2015, 33 (05) : 547 - 560
  • [47] Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves
    Kikuchi, Daisuke
    Prananto, Dwi
    Hayashi, Kunitaka
    Laraoui, Abdelghani
    Mizuochi, Norikazu
    Hatano, Mutsuko
    Saitoh, Eiji
    Kim, Yousoo
    Meriles, Carlos A.
    An, Toshu
    APPLIED PHYSICS EXPRESS, 2017, 10 (10)
  • [48] Fluctuation of long-distance sound propagation in the central Pacific
    Ogasawara, Hanako
    Nakamura, Toshiaki
    Hachiya, Hiroyuki
    Fujimori, Hidetoshi
    Mizutani, Koichi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (5B): : 4842 - 4846
  • [49] 220 GHz Long-Distance Propagation Loss in the Air
    Ying-Jiang Guo
    Kai-Da Xu
    Journal of Infrared, Millimeter, and Terahertz Waves, 2023, 44 : 82 - 97
  • [50] Fluctuation of long-distance sound propagation in the central pacific
    Ogasawara, Hanako
    Nakamura, Toshiaki
    Hachiya, Hiroyuki
    Fujimori, Hidetoshi
    Mizutani, Koichi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45 (5 B): : 4842 - 4846