Long-Distance Coherent Propagation of High-Velocity Antiferromagnetic Spin Waves

被引:19
|
作者
Wang, Hanchen [1 ,2 ,3 ]
Yuan, Rundong [1 ]
Zhou, Yongjian [4 ]
Zhang, Yuelin [1 ]
Chen, Jilei [2 ,5 ]
Liu, Song [2 ,5 ]
Jia, Hao [2 ,5 ]
Yu, Dapeng [2 ,5 ]
Ansermet, Jean-Philippe [5 ,6 ]
Song, Cheng [4 ]
Yu, Haiming [1 ,2 ]
机构
[1] Beihang Univ, Fert Beijing Inst, Sch Integrated Circuit Sci & Engn, MIIT Key Lab Spintron, Beijing 100191, Peoples R China
[2] Int Quantum Acad, Shenzhen 518048, Peoples R China
[3] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland
[4] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
关键词
MAGNETIC DOMAIN-WALLS;
D O I
10.1103/PhysRevLett.130.096701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on coherent propagation of antiferromagnetic (AFM) spin waves over a long distance (similar to 10 mu m) at room temperature in a canted AFM alpha-Fe2O3 owing to the Dzyaloshinskii-Moriya interaction (DMI). Unprecedented high group velocities (up to 22.5 km/s) are characterized by microwave transmission using all-electrical spin wave spectroscopy. We derive analytically AFM spin-wave dispersion in the presence of the DMI which accounts for our experimental results. The AFM spin waves excited by nanometric coplanar waveguides have large wave vectors in the exchange regime and follow a quasilinear dispersion relation. Fitting of experimental data with our theoretical model yields an AFM exchange stiffness length of 1.7 angstrom. Our results provide key insights on AFM spin dynamics and demonstrate high-speed functionality for AFM magnonics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Influence of an inhomogeneous structure of the high-latitude ionosphere on the long-distance propagation of high-frequency radio waves
    V.P. Uryadov
    G. G.Vertogradov
    E. G.Vertogradova
    Radiophysics and Quantum Electronics, 2012, 55 : 232 - 240
  • [22] Long-distance entanglement in spin systems
    Venuti, L. Campos
    Boschi, C. Degli Esposti
    Roncaglia, M.
    PHYSICAL REVIEW LETTERS, 2006, 96 (24)
  • [23] SPIN CHAINS Long-distance relationship
    Mitra, Chiranjib
    NATURE PHYSICS, 2015, 11 (03) : 212 - 213
  • [24] HIGH-VELOCITY PSEUDOSURFACE WAVES (HVPSAW)
    DACUNHA, MP
    ADLER, EL
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1995, 42 (05) : 840 - 844
  • [26] Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime
    Salimath, A.
    Zhuo, Fengjun
    Tomasello, R.
    Finocchio, G.
    Manchon, A.
    PHYSICAL REVIEW B, 2020, 101 (02)
  • [27] Analysis of Long-Distance Propagation Characteristics of LF Multi-Hop Sky Waves
    Zhou, Lili
    Zhu, Xinyue
    Mu, Zhonglin
    Zheng, Yue
    Hu, Xinyue
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2023, 114 : 13 - 19
  • [28] LONG-DISTANCE PROPAGATION OF SHALLOW-WATER WAVES OVER AN OCEAN OF RANDOM DEPTH
    ELTER, JF
    MOLYNEUX, JE
    JOURNAL OF FLUID MECHANICS, 1972, 53 (MAY9) : 1 - &
  • [29] Photon distribution function for long-distance propagation of partially coherent beams through the turbulent atmosphere
    Berman, G. P.
    Chumak, A. A.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [30] SIMULATION OF LONG-DISTANCE OPTICAL PROPAGATION ON A BENCHTOP
    FEIN, ME
    SHENG, SC
    SOBOTTKE, M
    APPLIED OPTICS, 1989, 28 (08): : 1565 - 1568