VECTOR-QUANTIZED LATENT FLOWS FOR MEDICAL IMAGE SYNTHESIS AND OUT-OF-DISTRIBUTION DETECTION

被引:0
|
作者
Khader, Firas [1 ]
Mueller-Franzes, Gustav [1 ]
Arasteh, Soroosh Tayebi [1 ]
Han, Tianyu [2 ]
Kather, Jakob Nikolas [3 ,4 ,5 ,6 ]
Stegmaier, Johannes [7 ]
Nebelung, Sven [1 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diagnost & Intervent Radiol, Aachen, Germany
[2] Rhein Westfal TH Aachen, Phys Mol Imaging Syst, Expt Mol Imaging, Aachen, Germany
[3] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, W Yorkshire, England
[4] German Canc Res Ctr, German Canc Consortium DKTK, Heidelberg, Germany
[5] Univ Heidelberg Hosp, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[6] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[7] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
关键词
Out-of-Distribution Detection; Generative Model; Medical Support;
D O I
10.1109/ISBI53787.2023.10230460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an innovative method that allows for simultaneous out-of-distribution detection and image generation by encoding images in the latent space of a vector-quantized autoencoder and using normalizing flow models. The technique is demonstrated on a medical dataset of knee radiographs and can be used to relieve clinical radiologists of tedious tasks of quality control while simultaneously guiding radiologic technologists to improved and standardized image quality during image acquisition.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Rethinking the Objectives of Vector-Quantized Tokenizers for Image Synthesis
    Gu, Yuchao
    Wang, Xintao
    Ge, Yixiao
    Shan, Ying
    Shou, Mike Zheng
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 7631 - 7640
  • [2] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [3] Dimensionality Reduction for Improving Out-of-Distribution Detection in Medical Image Segmentation
    Woodland, McKell
    Patel, Nihil
    Al Taie, Mais
    Yung, Joshua P.
    Netherton, Tucker J.
    Patel, Ankit B.
    Brock, Kristy K.
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023, 2023, 14291 : 147 - 156
  • [4] Research on Image Out-of-Distribution Detection: A Review
    Guo L.
    Li G.
    Gong K.
    Xue Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (07): : 613 - 633
  • [5] Improving Calibration and Out-of-Distribution Detection in Deep Models for Medical Image Segmentation
    Karimi D.
    Gholipour A.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (02): : 383 - 397
  • [6] Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation
    Vasiliuk, Anton
    Frolova, Daria
    Belyaev, Mikhail
    Shirokikh, Boris
    JOURNAL OF IMAGING, 2023, 9 (09)
  • [7] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Boosting Out-of-Distribution Image Detection With Epistemic Uncertainty
    Oh, Dokwan
    Ji, Daehyun
    Kwon, Ohmin
    Hyun, Yoonsuk
    IEEE ACCESS, 2022, 10 : 109289 - 109298
  • [9] Improving Normalizing Flows with the Approximate Mass for Out-of-Distribution Detection
    Chali, Samy
    Kucher, Inna
    Duranton, Marc
    Klein, Jacques-Olivier
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 750 - 758
  • [10] VQCNIR: Clearer Night Image Restoration with Vector-Quantized Codebook
    Zou, Wenbin
    Gao, Hongxia
    Ye, Tian
    Chen, Liang
    Yang, Weipeng
    Huang, Shasha
    Chen, Hongshen
    Chen, Sixiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7873 - 7881