On difference-based gradient estimation in nonparametric regression

被引:2
|
作者
Zhang, Maoyu [1 ]
Dai, Wenlin [1 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Ctr Appl Stat, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
bias correction; difference sequence; gradient estimation; optimal convergence rate; plug-in bandwidth; DERIVATIVE ESTIMATION; CONFIDENCE BANDS; CHOICE;
D O I
10.1002/sam.11644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework to directly estimate the gradient in multivariate nonparametric regression models that bypasses fitting the regression function. Specifically, we construct the estimator as a linear combination of adjacent observations with the coefficients from a vector-valued difference sequence, so it is more flexible than existing methods. Under the equidistant designs, closed-form solutions of the optimal sequences are derived by minimizing the estimation variance, with the estimation bias well controlled. We derive the theoretical properties of the estimators and show that they achieve the optimal convergence rate. Further, we propose a data-driven tuning parameter-selection criterion for practical implementation. The effectiveness of our estimators is validated via simulation studies and a real data application.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] ROBUST NONPARAMETRIC REGRESSION ESTIMATION
    BOENTE, G
    FRAIMAN, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (02) : 180 - 198
  • [42] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS
    BENEDETTI, JK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (02): : 248 - 253
  • [43] Nonparametric density and regression estimation
    DiNardo, J
    Tobias, JL
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 11 - 28
  • [44] Estimation of nonparametric regression function
    Lungu, Ion
    Manole, Sorin
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2007, 41 (1-2): : 121 - 130
  • [45] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTION
    SABRY, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (05): : 285 - 288
  • [46] Nonparametric estimation for quadratic regression
    Chatterjee, Samprit
    Olkin, Ingram
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1156 - 1163
  • [47] The Semantics of Comparatives: A Difference-Based Approach
    Zhang, Linmin
    Ling, Jia
    JOURNAL OF SEMANTICS, 2021, 38 (02) : 249 - 303
  • [48] Robust difference-based outlier detection
    Park, Chun Gun
    Kim, Inyoung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (22) : 5553 - 5577
  • [49] A difference-based version model for OODBMS
    Jea, KF
    Feng, HB
    Yau, YR
    Chen, SK
    Dai, JC
    1998 ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE, PROCEEDINGS, 1998, : 369 - 376
  • [50] The consistency for the estimator of nonparametric regression model based on martingale difference errors
    Zhiyong Chen
    Haibin Wang
    Xuejun Wang
    Statistical Papers, 2016, 57 : 451 - 469