On difference-based gradient estimation in nonparametric regression

被引:2
|
作者
Zhang, Maoyu [1 ]
Dai, Wenlin [1 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Ctr Appl Stat, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
bias correction; difference sequence; gradient estimation; optimal convergence rate; plug-in bandwidth; DERIVATIVE ESTIMATION; CONFIDENCE BANDS; CHOICE;
D O I
10.1002/sam.11644
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework to directly estimate the gradient in multivariate nonparametric regression models that bypasses fitting the regression function. Specifically, we construct the estimator as a linear combination of adjacent observations with the coefficients from a vector-valued difference sequence, so it is more flexible than existing methods. Under the equidistant designs, closed-form solutions of the optimal sequences are derived by minimizing the estimation variance, with the estimation bias well controlled. We derive the theoretical properties of the estimators and show that they achieve the optimal convergence rate. Further, we propose a data-driven tuning parameter-selection criterion for practical implementation. The effectiveness of our estimators is validated via simulation studies and a real data application.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal difference-based estimation for partially linear models
    Zhou, Yuejin
    Cheng, Yebin
    Dai, Wenlin
    Tong, Tiejun
    COMPUTATIONAL STATISTICS, 2018, 33 (02) : 863 - 885
  • [22] COPULA BASED NONPARAMETRIC REGRESSION ESTIMATION
    Matvejevs, Andrejs
    Sadurskis, Karlis
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 183 - 185
  • [23] Variance estimation in nonparametric regression via the difference sequence method
    Brown, Lawrence D.
    Levine, M.
    ANNALS OF STATISTICS, 2007, 35 (05): : 2219 - 2232
  • [24] Optimal variance estimation based on lagged second-order difference in nonparametric regression
    WenWu Wang
    Lu Lin
    Li Yu
    Computational Statistics, 2017, 32 : 1047 - 1063
  • [25] Optimal variance estimation based on lagged second-order difference in nonparametric regression
    Wang, WenWu
    Lin, Lu
    Yu, Li
    COMPUTATIONAL STATISTICS, 2017, 32 (03) : 1047 - 1063
  • [26] Using difference-based methods for inference in regression with fractionally integrated processes
    Tsay, Wen-Jen
    JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (06) : 827 - 843
  • [27] Outlier detection using difference-based variance estimators in multiple regression
    Park, Chun Gun
    Kim, Inyoung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (24) : 5986 - 6001
  • [28] On the Choice of Difference Sequence in a Unified Framework for Variance Estimation in Nonparametric Regression
    Dai, Wenlin
    Tong, Tiejun
    Zhu, Lixing
    STATISTICAL SCIENCE, 2017, 32 (03) : 455 - 468
  • [29] Randomized difference-based gradient-free algorithm for distributed resource allocation
    Xiaoxue GENG
    Wenxiao ZHAO
    Science China(Information Sciences), 2022, 65 (04) : 212 - 228
  • [30] Randomized difference-based gradient-free algorithm for distributed resource allocation
    Geng, Xiaoxue
    Zhao, Wenxiao
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (04)