Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression

被引:2
|
作者
Chang, Chi-Hsien [1 ]
Chiang, Tu-Chin [1 ]
Hsu, Tzu-Hao [1 ]
Chuang, Ting-Shuo [1 ]
Fang, Wen-Zhong [1 ]
Yu, Tian-Li [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taiwan Evolutionary Intelligence LAB, Taipei, Taiwan
关键词
Genetic programming; Symbolic regression; Taylor polynomial;
D O I
10.1145/3583133.3590591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlike most research of symbolic regression with genetic programming (GP) concerning black-box optimization, this paper focuses on the scenario where the underlying function is available, but due to limited computational resources or product imperfection, the function needs to be approximated with simplicity to fit measured data. Taylor polynomial (TP) is commonly used in such scenario; however, its performance drops drastically away from the expansion point. On the other hand, solely using GP does not utilize the knowledge of the underlying function, even though possibly inaccurate. This paper proposes using GP as a TP enhancer, namely TPE-GP, to combine the advantages from TP and GP. Specifically, TPE-GP utilizes infinite-order operators to compensate the power of TP with finite order. Empirically, on functions that are expressible by TP, TP outperformed both gplearn and TPE-GP as expected, while TPE-GP outperformed gplearn due to the use of TP. On functions that are not expressible by TP but expressible by the function set (FS), TPE-GP was competitive with gplearn while both outperformed TP. Finally, on functions that are not expressible by both TP and FS, TPE-GP outperformed both TP and gplearn, indicating the hybrid did achieve the synergy effect from TP and GP.
引用
收藏
页码:543 / 546
页数:4
相关论文
共 50 条
  • [21] Using genetic programming for symbolic regression to detect climate change signatures
    Ricketts, J. H.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 691 - 697
  • [22] Solving symbolic regression problems using incremental evaluation in Genetic Programming
    Hoang Tuan-Hao
    McKay, R. I.
    Essam, Daryl
    Nguyen Xuan Hoai
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2119 - +
  • [23] Using Multiobjective Genetic Programming to infer logistic polynomial regression models
    Hunter, A
    ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 193 - 197
  • [24] Genetic Programming for Instance Transfer Learning in Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (01) : 25 - 38
  • [25] Racing Control Variable Genetic Programming for Symbolic Regression
    Jiang, Nan
    Xue, Yexiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 12901 - 12909
  • [26] Improving Genetic Programming Based Symbolic Regression Using Deterministic Machine Learning
    Icke, Ilknur
    Bongard, Joshua C.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1763 - 1770
  • [27] Sensitivity analysis of genetic programming: A case of symbolic regression
    Chen, SH
    Kuo, TW
    Shieh, YP
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 1119 - 1122
  • [28] Bingo: A Customizable Framework for Symbolic Regression with Genetic Programming
    Randall, David L.
    Townsend, Tyler S.
    Hochhalter, Jacob D.
    Bomarito, Geoffrey F.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 2282 - 2288
  • [29] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [30] Population diversity and inheritance in genetic programming for symbolic regression
    Burlacu, Bogdan
    Yang, Kaifeng
    Affenzeller, Michael
    NATURAL COMPUTING, 2024, 23 (03) : 531 - 566